
W
ork

in
g dra

ft
FA U LT D I A G N O S I S TO O L B O X

– v0.13
erik frisk <frisk@isy.liu.se>

Department of Electrical Engineering

Linköping University, Sweden

summary
Fault Diagnosis Toolbox is a Matlab toolbox for analysis and design of fault diagno-
sis systems for dynamic systems, primarily described by differential equations. In
particular, the toolbox is focused on techniques that utilize structural analysis, i.e.,
methods that analyze and utilize the model structure. The model structure is the
interconnections of model variables and is often described as a bi-partite graph or
an incidence matrix. Key features of the toolbox are

• Defining diagnosis models, using only model structure or full symbolic ex-
pressions.

• Diagnosability analysis - analyze a given model to determine which faults that
can be detected and which faults that can be isolated

• Model exploration and analysis, e.g., plotting model properties, Dulmage-
Mendelsohn decomposition, DAE index analysis, . . .

• Finding overdetermined sets of equations (MSO sets), which are minimal sub-
models that can be used to design fault detectors

• Sensor placement - determine minimal sets of sensors needed to be able to
detect and isolate faults

• Code generation (Matlab and C) for residual generators. Two different types
of residual generators are supported, sequential residual generators based
on a matching in the model structure graph, and observer based residual
generators.

The toolbox relies on the object-oriented functionality of the Matlab language and
is freely available under a MIT license. The latest version can always be downloaded
from our website at http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/
and links to relevant publications can be found also at our list of publications
http://www.fs.isy.liu.se/Publications.

1

frisk@isy.liu.se
http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/
http://www.fs.isy.liu.se/Publications

2

contributors
The following people has contributed with code

• Erik Frisk, Department of Electrical Engineering, Linköping University, Swe-
den.

• Mattias Krysander, Department of Electrical Engineering, Linköping Univer-
sity, Sweden.

• Daniel Jung, Department of Electrical Engineering, Linköping University, Swe-
den.

contents 3

contents
1 Introduction and overview 4

1.1 Reference literature . 5

1.2 Downloading and installation . 5

1.3 Terms of usage . 6

2 Defining models 6

2.1 Defining a structural model . 7

2.1.1 Defining the model using incidence matrices 7

2.1.2 Defining the model using variable names 7

2.1.3 Defining dynamic models . 9

2.2 Defining symbolic models . 11

2.2.1 Conditional constraints . 12

2.2.2 Using external functions . 12

3 Dulmage-Mendelsohn decomposition 12

4 Analysis of overdetermined equations 13

5 Diagnosability analysis 15

6 Test Selection 15

6.1 A minimal hitting set approach . 16

6.2 Random Forest based Approach . 16

7 Sensor placement analysis 16

8 Residual generator design 18

8.1 Sequential residual generator design . 18

8.2 Generating and compiling generated C code 21

8.3 Observer based residual generator design 21

9 Use case 23

9.1 Model definition . 24

9.2 Isolability analysis . 25

9.3 Find overdetermined set of equations 26

9.4 Design residual generators . 27

9.5 Isolability properties of residual generators 28

9.6 Simulation results . 29

a Summary of class methods 32

b Compile C++ implementations 34

b.1 Minimal Hitting Set . 34

b.2 MSO algorithm . 34

c Generated code in use-case 36

c.1 ResGen1 . 36

c.2 ResGen2 . 37

c.3 ResGen3 . 38

c.4 ResGen4 . 39

d Index of keywords and methods 41

1 introduction and overview 4

1 introduction and overview
This toolbox covers a set of methods and functionality for fault diagnosis of dynamic
systems described by differential (or static) equations. The field of fault diagnosis is
wide and there are many available methods described in the literature. This toolbox
focuses on techniques from the Automatic Control community (Safeprocess) and
some from the AI field (DX). In particular, techniques related to structural analysis
is covered because they are particularly suited to automate in a computer tool. This
manual is not intended as a book on diagnosis or structural methods and some of
the material covered requires knowledge outside of this text. See Section 1.1 for
some pointers to relevant literature.

This manual will not cover all the details, options, and outputs of all available
methods, instead it will cover typical uses. The outline of the manual is that in Sec-
tion 2, it will be covered how to define models, and then in Sections 3-8, different
analysis and design techniques included in the toolbox will be covered. Section 9

describes a use case, beginning with a model definition and all the way to simula-
tion of automatically generated residual generators. The directory examples in the
source distribution includes a number of use cases, including the one covered in
Section 9.

The toolbox requires Matlab v7.6 (R2008a) or later for the object-oriented func-
tionality and for symbolic math functionality, the Symbolic Toolbox version 7.14

(2012a) or later is required1. The fault diagnosis toolbox utilizes the object oriented
functionality of the Matlab language and the main class is DiagnosisModel. The
most detailed documentation of the methods can be found in Matlab and to start
the help browser, write

1 >> doc DiagnosisModel

It is also possible to list all available methods by

1 >> methods DiagnosisModel
2

3 Methods for class DiagnosisModel:
4

5 AddEquations Matching
6 AddSensors MeasurementEquations
7 AlgebraicVariables ObserverResGen
8 BipartiteToLaTeX Pantelides
9 CompiledMHS PlotDM

10 CompiledMSO PlotMatching
11 DetectabilityAnalysis PlotModel
12 DiagnosisModel PossibleSensorLocations
13 DifferentialConstraints Redundancy
14 DynamicVariables RemoveFaultVariables
15 FSM ReplaceEquations
16 GenSimulationModel SensorLocationsWithFaults
17 IsDynamic SensorPlacementDetectability
18 IsHighIndex SensorPlacementIsolability
19 IsLowIndex SeqResGen
20 IsObservable StateVariables
21 IsPSO Structural
22 IsStatic SubModel
23 IsolabilityAnalysis TestSelection
24 IsolabilityAnalysisArrs copy
25 IsolabilityAnalysisFSM srank

1 The toolbox is primarily developed and tested under v8.4 (R2014b) and later versions of Matlab/Sym-
bolic Toolbox.

1.1 Reference literature 5

26 Lint ne
27 LumpDynamics nf
28 MSO nx
29 MSOCausalitySweep nz
30 MTES
31 MTESRedundancy
32

33 Methods of DiagnosisModel inherited from handle.

To obtain help for a particular method, here for example the PlotDM method, write

1 >> help DiagnosisModel.PlotDM
2 PlotDM Plots Dulmage−Mendelsohn decomposition of model structure
3

4 [row,col,psodecomp] = model.PlotDM(options)
5

6 Plots a Dulmage−Mendelsohn decomposition, originally described in
7 Dulmage, A. and Mendelsohn, N. "Coverings of bipartite graphs."
8 Canadian Journal of Mathematics 10.4 (1958): 516−534.
9

10 By default, the Dulmage_Mendelsohn decomposition is plotted for the
11 incidence matrix for the unknown variables.
12

13 Options can be given as a number of key/value pairs
14

15 Key Value
16 eqclass If true, perform canonical decomposition of M+ and
17 plot equivalence classes
18

19 For further details on the canonical decomposition
20 of the M+ part of the structure, see Chapter 4 in
21 "Design and Analysis of Diagnosis Systems Using Structural
22 Methods", PhD thesis, Mattias Krysander, 2006.
23 fault If true, indicates fault equations in canonical
24 decomposition of M+
25

26 submodel Array of equation indices corresponding to submodel.
27

28 Outputs:
29 row − row permutation used in the plot
30 col − column permutation used in the plot
31 psodecomp − result of psodecomposition of the M+ part
32

33 Example:
34 model.PlotDM(’eqclass’, true, ’ fault ’, true)

1.1 Reference literature

Our publications on structural methods (all should not be included): [17, 18, 6, 10,
5, 11, 15, 16]

Other (include more): [1]

1.2 Downloading and installation

The latest version of the package can always be obtained from http://www.fs.isy.

liu.se/Software/FaultDiagnosisToolbox/ and the installation is very simple:

http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/
http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/

1.3 Terms of usage 6

1. Uncompress the tar.gz/zip-file

2. Add the src directory to the Matlab-path

3. (optional) There are C++ implementations of some computationally expensive
algorithms. It is not necessary to compile these for the toolbox to work, there
are Matlab implementations directly installed. However, with the compiled
versions there might be significant increases in performance.

For linux and Mac OS X there are pre-compiled versions and to install, copy
the suitable files from the binaries directory into the src directory. See Ap-
pendix B for details how to compile C++ sources.

In the archive there is also a manual (this document) and a directory with a few
example usages of toolbox functionality. The toolbox requires Matlab v7.6 (R2008a)
or newer and for full functionality it requires access to the symbolic math toolbox.

1.3 Terms of usage

The toolbox is free for anyone to use, it is distributed under the MIT License (MIT)
(http://opensource.org/licenses/MIT). If you encounter bugs, have comments, or
suggestions, please contact Erik Frisk <frisk@isy.liu.se>. If you use the toolbox
in your scientific work, please cite the toolbox (not yet published) and the corre-
sponding methodological publication. The relevant publication is indicated in the
help text for the class methods and functions.

2 defining models
A first step in using the toolbox is to define the model object. There are two types
of model specifications

• structural model

• symbolic model

A structural model only contains information about model structure and does not
need specifications on the underlying symbolic expressions. Many of the analysis
methods can be applied to structural models and it is mainly the residual generation
methods that need the symbolic expressions. When defining a symbolic model, the
toolbox automatically computes the model structure.

To illustrate, the following small example will be used.

e1 : ẋ1 = −c1x1 + x2 + x5

e2 : ẋ2 = −c2x2 + x3 + x4

e3 : ẋ3 = −c3x3 + x5 + f1 + f2

e4 : ẋ4 = −c4x4 + x5 + f3

e5 : ẋ5 = −c5x5 + u + f4

e6 : y1 = x1

e7 : y2 = x2

e8 : y3 = x3

(1)

The variables xi are the unknown states, yi measurement signals, u known control
input, fi the faults, and ci known model parameters. The model structure is then
given by Table 1. Here, the dynamics are lumped, i.e., the variables are considered as
signals and it is not important if a variable is differentiated or not. See [5] for some
further discussion on this and for dynamic models, see Section 2.1.3 for further
discussion where it is shown how to explicitly define non-lumped dynamic models.

http://opensource.org/licenses/MIT
frisk@isy.liu.se

2.1 Defining a structural model 7

Table 1: Model structure of example model (1).
x1 x2 x3 x4 x5 y1 y2 y3 u f1 f2 f3 f4

e1 X X X
e2 X X X
e3 X X X X
e4 X X X
e5 X X X
e6 X X
e7 X X
e8 X X

2.1 Defining a structural model

There are two ways of defining a structural model; either the incidence matrices are
given directly or the variable names for each equation are specified.

2.1.1 Defining the model using incidence matrices

To define this model structure in the toolbox, i.e., creating the model object, the first
important function call is DiagnosisModel. To use this function, define a structure
with the model specification and then call DiagnosisModel with the structure as
argument. The model specification has 4 important fields

• type - when specifying a model using the incidence matrices, this should be
the string MatrixStruc

• X - incidence matrix for the unknown variables

• F - incidence matrix for the faults

• Z - incidence matrix for the known variables

In Matlab, this becomes

1 modelDef.type = ’MatrixStruc’;
2 modelDef.X = [1 1 0 0 1;0 1 1 1 0;0 0 1 0 1;0 0 0 1 1;0 0 0 0 1;...
3 1 0 0 0 0;0 1 0 0 0; 0 0 1 0 0];
4 modelDef.F = [0 0 0 0; 0 0 0 0; 1 1 0 0; 0 0 1 0;...
5 0 0 0 1; 0 0 0 0; 0 0 0 0; 0 0 0 0];
6 modelDef.Z = [0 0 0 0; 0 0 0 0; 0 0 0 0; 0 0 0 0;...
7 0 0 0 1; 1 0 0 0; 0 1 0 0; 0 0 1 0];

The variable names are by default xi, zi and fi. To specify the variable names
explicitly, add field names x, z, or f respectively. For example, to specify the known
variable names as in the model (1), add

1 modelDef.z = {’y1 ’,’y2 ’,’ y3 ’,’ u ’};

After the model specification is done, create the model object by running

1 model = DiagnosisModel(modelDef);
2 model.name = ’Example model’;

where also a name for the model can be specified (optional).

2.1.2 Defining the model using variable names

Defining incidence matrices is prone to errors and a more convenient way to define
model the model structure is by only providing variable names. Again, a model
structure is defined with 5 important fields

2.1 Defining a structural model 8

• type - when specifying a model using the incidence matrices, this should be
the string VarStruc

• x - cell array with unknown variable names

• f - cell array with fault variable names

• z - cell array with known variable names

• rels - a cell array describing the variables in each equation.

For the model (1), this model specification, which is equivalent to the model defini-
tion above, becomes

1 modelDef.type = ’VarStruc’;
2 modelDef.x = {’x1 ’,’x2 ’,’ x3 ’,’ x4 ’,’ x5 ’};
3 modelDef.z = {’y1 ’,’y2 ’,’ y3 ’,’ u ’};
4 modelDef.f = {’f1 ’,’ f2 ’,’ f3 ’,’ f4 ’};
5 modelDef.rels = {{’x1 ’,’ x2 ’,’ x5 ’},
6 {’ x2 ’,’ x3 ’,’ x4 ’},{’ x3 ’,’ x5 ’,’ f1 ’,’ f2 ’},...
7 {’ x4 ’,’ x5 ’,’ f3 ’},{’ x5 ’,’ f4 ’,’ u ’},...
8 {’ y1 ’,’ x1 ’},{’ y2 ’,’ x2 ’},{’ y3 ’,’ x3 ’}};
9 model = DiagnosisModel(modelDef);

10 model.name = ’Example model’;

Now that the model is defined, we can try a few simple operations on the model
object. For example, the model structure can be plotted using the class method
PlotModel. The command

1 model.PlotModel()

will result in Figure 1. The class method Lint does some basic validity check on the

e1

e2

e3

e4

e5

e6

e7

e8

x1 x2 x3 x4 x5 f1 f2 f3 f4 y1 y2 y3 u
Example model

Figure 1: Result of class method PlotModel.

model definition, e.g.,

1 >> model.Lint()
2 Model: Example model
3

4 Variables
5 5 unknown variables
6 4 known variables

2.1 Defining a structural model 9

7 4 fault variables
8 8 equations, including 0 differential constraints
9 Degree of redundancy: 3

10

11 Model validation finished with 0 errors and 0 warnings

The model structure can also be illustrated using a bi-partite graph, the class method
BipartiteToLaTeX generates LATEX code generating a figure that can be directly type-
set using the LATEX-engine. For example

1 model.BipartiteToLaTeX(’bipartite.tex ’, ’ faults ’, true, ’shortnames’, true);

generates code for Figure 2.

e1

Equations

e2

e3

e4

e5

e6

e7

e8

x1

Variables

x2

x3

x4

x5

f1

Faults

f2

f3

f4

Figure 2: Result of class method BipartiteToLaTeX.

As a final note it is important to understand that the DiagnosisModel class is a
handle2 class in Matlab. This means that the variable model above is a reference to the
object. Thus, making

1 model2=model; % Warning! No new object

does not make a copy of the object, it merely stores another reference to the same
object. To get a new copy, use the copy class method as

1 model2 = model.copy(); % Safe, new object created

2.1.3 Defining dynamic models

To make systematic analysis of some dynamic properties of the model, there is a
need to explicitly state the dynamic variables. The way to do this is in the tool-
box is to introduce some new variables and explicit differential-constraints. Thus,
for model (1), introduce variables dxi for the differentiated variables, and add 5

2 See http://www.mathworks.com/help/matlab/handle-classes.html for details.

http://www.mathworks.com/help/matlab/handle-classes.html

2.1 Defining a structural model 10

differential constraints, one for each state-variable, explicitly connecting the differ-
entiated variable with the non-differentiated. Thus, a model description, equivalent
to (1), is

e1 : dx1 = −c1x1 + x2 + x5 e9 : dx1 =
d
dt

x1

e2 : dx2 = −c2x2 + x3 + x4 e10 : dx2 =
d
dt

x2

e3 : dx3 = −c3x3 + x5 + f1 + f2 e11 : dx3 =
d
dt

x3

e4 : dx4 = −c4x4 + x5 + f3 e12 : dx4 =
d
dt

x4

e5 : dx5 = −c5x5 + u + f4 e13 : dx5 =
d
dt

x5

e6 : y1 = x1

e7 : y2 = x2

e8 : y3 = x3

(2)

and here the differential-constraints e9-e13 is explicit. Model (2) can be defined in the
toolbox using variable names just as before, but using the function DiffConstraint

to define the differential constraints. Matlab code to define the dynamic model then
becomes

1 modelDef.type = ’VarStruc’;
2 modelDef.x = {’dx1’,’dx2 ’,’ dx3 ’,’ dx4 ’,’ dx5’, ’x1 ’,’ x2 ’,’ x3 ’,’ x4 ’,’ x5 ’};
3 modelDef.z = {’y1 ’,’y2 ’,’ y3 ’,’ u ’};
4 modelDef.f = {’f1 ’,’ f2 ’,’ f3 ’,’ f4 ’};
5 modelDef.rels = {{’dx1 ’,’ x1 ’,’ x2 ’,’ x5 ’}, {’ dx2 ’,’ x2 ’,’ x3 ’,’ x4 ’},...
6 {’ dx3 ’,’ x3 ’,’ x5 ’,’ f1 ’,’ f2 ’},{’ dx4 ’,’ x4 ’,’ x5 ’,’ f3 ’},...
7 {’ dx5 ’,’ x5 ’,’ f4 ’,’ u ’},{’ y1 ’,’ x1 ’},{’ y2 ’,’ x2 ’},{’ y3 ’,’ x3 ’},...
8 DiffConstraint(’dx1 ’,’ x1 ’), DiffConstraint(’dx2 ’,’ x2 ’),...
9 DiffConstraint(’dx3 ’,’ x3 ’), DiffConstraint(’dx4 ’,’ x4 ’),...

10 DiffConstraint(’dx5 ’,’ x5 ’)};
11 model = DiagnosisModel(modelDef);

Calling the PlotModel method results in Figure 3. This way of defining the dy-

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

D I

D I

D I

D I

D I

dx
1

dx
2

dx
3

dx
4

dx
5 x1 x2 x3 x4 x5 f1 f2 f3 f4 y1 y2 y3 u

Figure 3: Result of calling the PlotModel method for the model (2). Note the I and D that
indicate differentiated/integrated variable relation.

2.2 Defining symbolic models 11

namics is not necessarily optimal since it may introduce unnecessary variables and
also may affect the index of the model. However, this forces the model to be in
semi-explicit form

ẋ1 = g1(x1, x2) (3a)

0 = g2(x1, x2) (3b)

which makes further analysis significantly easier. For example, the semi-explicit
form (3) is (locally) low differential index [2] if and only if

∂g2

∂x2

is full rank. For a fully implicit DAE, additional analysis is needed, for example
utilizing the algorithm in [13].

2.2 Defining symbolic models

Defining a symbolic model, i.e., specifying the symbolic expressions for the model
constraints, makes it possible to make the same structural analyses as for the struc-
tural models and, in addition, generate code for residual generators. The Symbolic
Math Toolbox for Matlab3 is required for this to work.

To specify the model, create a model structure with type Symbolic and define the
model variables as before. Also add names of model parameters. In the case of
model (2), this looks like

1 modelDef.type = ’Symbolic’;
2 modelDef.x = {’dx1’,’dx2 ’,’ dx3 ’,’ dx4 ’,’ dx5’, ’x1 ’,’ x2 ’,’ x3 ’,’ x4 ’,’ x5 ’};
3 modelDef.z = {’y1 ’,’y2 ’,’ y3 ’,’ u ’};
4 modelDef.f = {’f1 ’,’ f2 ’,’ f3 ’,’ f4 ’};
5 modelDef.parameters = {’c1’,’c2 ’,’ c3 ’,’ c4 ’,’ c5 ’};

To specify values for parameters, not necessary, include a struct with the parameter
values as

1 param_values.c1 = 1.0
2 param_values.c2 = 2.0;
3 param_values.c3 = 3.0;
4 param_values.c4 = 4.0;
5 param_values.c5 = 5.0;

and then include in the model definition as

1 modelDef.parameter_values = param_values;

The next step is to make all model variables and parameters symbolic. This is
achieved with

1 syms(modelDef.x{:})
2 syms(modelDef.f{:})
3 syms(modelDef.z{:})
4 syms(modelDef.parameters{:})

Now that all variables and parameters are symbolic, the relations of the model can
be written down and the model object created as before.

1 modelDef.rels = {...
2 dx1 == −c1∗x1+x2+x5,...
3 dx2 == −c2∗x2+x3+x4,...

3 http://www.mathworks.com/products/symbolic/

http://www.mathworks.com/products/symbolic/

3 dulmage-mendelsohn decomposition 12

4 dx3 == −c3∗x3 + x5 + f1 + f2 ,...
5 dx4 == −c4∗x4+x5+f3,...
6 dx5 == −c5∗x5 + u + f4 ,...
7 y1 == x1, y2 == x2, y3 == x3, ...
8 DiffConstraint(’dx1 ’,’ x1 ’), DiffConstraint(’dx2 ’,’ x2 ’),...
9 DiffConstraint(’dx3 ’,’ x3 ’), DiffConstraint(’dx4 ’,’ x4 ’),...

10 DiffConstraint(’dx5 ’,’ x5 ’)};
11 model = DiagnosisModel(modelDef);
12 model.name = ’Example model’;

The differential constraints are added, as before, using the directive DiffConstraint.
To tidy up, the symbolic variables can be cleared from the workspace using the

commands

1 % clear temporary variables from workspace
2 clear (modelDef.x{:})
3 clear (modelDef.f{:})
4 clear (modelDef.z{:})
5 clear (modelDef.parameters{:})

When the symbolic model is specified, the model structure is automatically com-
puted and all the analysis/design tools utilizing the model structure can be directly
applied, in addition to some new methods operating on symbolic expressions. In
particular this applies to residual generation described in Section 8.

2.2.1 Conditional constraints

Not yet fully implemented. At the moment, define an external function as in Sec-
tion 2.2.2 for this functionality.

2.2.2 Using external functions

It is often the case in more complex models that there are external functions like
look-up tables. Such functions can be used when defining the model. For example,
consider that the model has a function for ηc with arguments as

ηc(ηc,max, ηc,min, X, Q)

Then, defining the function to be a symbolic function as

1 syms eta_c_fun(eta_cmax,eta_cmin,X,Q)

and then the function can be used as any other. Of course, the symbolic toolbox
will not be able to do symbolic manipulations of that particular function and the
causality of equations using that function will be uniquely determined by the model
formulation.

3 dulmage-mendelsohn decomposition
When doing any sorts of structural analysis for fault diagnosis, the Dulmage-Mendelsohn
decomposition [4] is a very useful tool [1]. Given a structural model, by proper and
well defined reordering of variables and equations, a structure graph can always
be transformed into the form shown in Figure 4. If X is a structure matrix, the
command

1 dm = GetDMParts(X);

is a simple wrapper around the dmperm command in Matlab, which computes the
Dulmage-Mendelsohn decomposition. The variable dm is a structure with 7 fields:

4 analysis of overdetermined equations 13

b0

b1

b2

. . .

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M−

M0

M+

Figure 4: Dulmage-Mendelsohn decomposition

• Mm - structure defining the rows and columns of the under-determined part
M−.

• M0 - cell array with structures defining the Hall components in M0

• Mp - structure defining the rows and columns of the over-determined part M+.

• M0eqs - collection of all rows in M0

• M0vars - collection of all columns in M0

• rowp - original row permutation

• colp - original column permutation

For fault diagnosis, there is a particular decomposition of the overdetermined
part that is of particular interest. The decomposition is defined in [11] and can
be computed using the PSODecomposition command. There is also a class method
that can plot the Dulmage-Mendelsohn decomposition of the model structure in
an informative way. For this method, there are two options that can be activated,
perform the decomposition of the over-determined part of the model, and indicate
which equations that are influenced by faults. This is particularly important in
diagnosability analysis. Below is a method call with both options activated,

1 model.PlotDM(’eqclass’, true, ’ fault ’, true)

and the result, for the three-tank model in [6], is shown in Figure 5.

4 analysis of overdetermined equations
Overdetermined parts of a model is highly interesting for fault diagnosis since these
are the parts with redundancy and thereby possible to use for fault diagnosis. In
the toolbox, there are two main class methods: MSO and MTES. The set of Minimally
Structurally Overdetermined (MSO) sets of equations are subset minimal sets of
equations with redundancy. Implemented in the toolbox is the algorithm from [11].
It is straightforward to apply. Given a model object model, the command

4 analysis of overdetermined equations 14

Variables
p3 q3 dp3 q0 dp1 dp2 p1 p2 q1 q2

E
qu

at
io

ns

e2

e3

e6

e12

e4

e9

e10

e5

e11

e1

e7

e8

fV1

fV2

fV3

fT1

fT2

fT3

Figure 5: Dulmage-Mendelsohn decomposition, with equivalence class decomposition, and
fault equation indication activated.

1 msos = model.MSO();

the set of all MSO sets are computed. Please beware that the cardinality of the set
of MSO sets is exponential in the degree of redundancy of the model. Therefore,
when the redundancy gets high enough the computational complexity of the algo-
rithm becomes very high. The notion of MSO is related to other works concerning
overdetermined sets of equations, see [12] for further discussions and similarities.
Instructions to install compiled C++ version of the MSO algorithm for increased
performance can be found in Appendix B.2.

For the model (2), there are 11 MSO sets where one for example is MSO1 =
{3, 5, 8, 11, 13} which means that the equations

e3 : dx3 = −c3x3 + x5 + f1 + f2 e11 : dx3 =
d
dt

x3

e5 : dx5 = −c5x5 + u + f4 e13 : dx5 =
d
dt

x5

e8 : y3 = x3

are overdetermined and can be used to design a residual generator. For example,
based on the equations above one can derive the ARR

r = ÿ3 + (c3 + c5)ẏ3 + c3c5y3 − u

or the observer based residual generator

˙̂x3 = −c3 x̂3 + x̂5 + K1(y3 − x̂3)

˙̂x5 = −c5 x̂5 + u ++K2(y3 − x̂3)

r = y3 − x̂3

where K1 and K2 are observer gains to ensure observer stability.
As mentioned above, the size of the set of MSO sets is exponential in the re-

dundancy of the model and therefore may not be applicable to high-redundancy
problems. For this reason, a second type of overdetermined sets of equations might
be of interest, Minimal Test Equation Support (MTES), defined in [9]. These do not
have the as severe complexity issues as the MSO sets and the class method is called
in a similar way using the method MTES

5 diagnosability analysis 15

1 mtes = model.MTES();

5 diagnosability analysis
A set of methods for analyzing diagnosability of a model or a set of residual gen-
erators are available. Here, diagnosability means to analyze which faults that are
structurally detectable and structurally isolable. Basic definitions on detectability
and isolability used in the toolbox can be found in [10, 6].

For a basic detectability analysis of a given model, use the class method DetectabilityAnalysis

as

1 [df,ndf] = model.DetectabilityAnalysis();

The df output is the set of detectable faults and ndf the set of non-detectable faults.

Similarly, to plot a fault isolability analysis of the model use the class method
IsolabilityAnalysis as

1 model.IsolabilityAnalysis();

With no output arguments, the method plots the analysis. It is possible to restrict
the analysis to causality assumptions [6] which here means that the analysis can be
done in derivative causality, integral causality, or mixed causality. The mixed causal-
ity is the default if no causality assumption is specified. To explicitly specify the
causality assumption, write

1 model.IsolabilityAnalysis(’ causality ’, ’der ’);
2 model.IsolabilityAnalysis(’ causality ’, ’ int ’);
3 model.IsolabilityAnalysis(’ causality ’, ’mixed’);

See Figures 10 and 11 for example outputs. The interpretation is that with a non-
zero element at position (i, j) means that fault in column j can not be isolated from
fault in row i.

It is also possible to do analysis on a set of ARRs, represented as sets of equations
to be used to design residual generators. For example, to see what is the isolability
properties of a diagnosis system based on MSO 1 and 3 (just example numbers),
use the class method IsolabilityAnalysisArrs as

1 msos = model.MSO();
2 model.IsolabilityAnalysisARR(msos([1,3]));

It is also possible to obtain the fault sensitivity matrix (FSM) using the class method
FSM as

1 FSM = model.FSM(Msos([1,3]));

and then perform the analysis on the fault signature matrix using the class method
IsolabilityAnalysisFSM as

1 model.IsolabilityAnalysisFSM(FSM);

6 test selection
With a set of MSOs, or the corresponding fault signature matrix (FSM), it is an inter-
esting problem how to select a subset of tests that achieves required fault isolability

6.1 A minimal hitting set approach 16

performance. In general, not all possible tests are needed and often substantially
less. The toolbox currently supports a simple minimal hitting set based approach
to selecting tests and a data-driven approach based on Random Forest machine
learning classifiers.

6.1 A minimal hitting set approach

The minimal hitting-set approach is implemented in the class method TestSelection,
see [17] for further discussion on this approach. The following call finds all subset
minimal sets of tests, based on the fault signature matrix FSM, such that maximal
fault isolability is possible.

1 ts = model.TestSelection(FSM);

It is also possible to use the set of MSOs directly

1 ts = model.TestSelection(msos);

The above problem has poor complexity properties and can very quickly become
intractable and therefore other methods are available. For example, to choose an ap-
proximate hitting set approach called aminc, which will finish fast but not guarantee
a minimal solution, call

1 ts = model.TestSelection(msos, ’method’, ’aminc’);

6.2 Random Forest based Approach

The minimal hitting-set approach is implemented, not in a class method since the
test selecxtion is not tightly coupled to a model but instead a data set.. Instead,
the method is implementated in the RandomForestTestSelection, see [7] for details.
In the example suite there is the engine data example from [7] implemented. For
futrher details, and a Python implementation, see also the public git repository
https://gitlab.liu.se/erifr93/MLTestSelection.

7 sensor placement analysis
Sensor placement, or possible sensor selection, is the task of choosing a set of sen-
sors such that diagnosis specifications are possible to reach. This toolbox imple-
ments the methods in [10].

A first step, before any analysis is possible, the set of possible sensor locations
must be defined. As a principle of the approach, sensors measure single variables
among the unknown variables. Thus, as is common, some sensors measure a func-
tion of the unknown variables x, and possibly known variables z, add a new variable
and equation to the model

xnew = f (x)

Then, xnew is the new possible sensor location. Possible sensor locations is specified
using the class method PossibleSensorLocations. For example, below it is speci-
fied that the first 15 unknown variables in the model is possible sensor locations.

1 model.PossibleSensorLocations(model.x(1:15));

Sensor locations can be specified by name, as above, or just simply indicies into the
set of unknown variables. For example, if positions 1, 2, 5, and 7 are possible sensor
locations, use

1 model.PossibleSensorLocations([1, 2, 5, 7]);

https://gitlab.liu.se/erifr93/MLTestSelection

7 sensor placement analysis 17

Also these new sensors may fail and if we want to include that into the analysis,
there is a need to specify sensor locations where added sensors may fail. This is
done using the class method SensorLocationsWithFaults. For example, if all new
sensors may fail, use

1 model.SensorLocationsWithFaults(model.x);

Now that possible sensor locations have been specified, to compute all minimal
sensor sets that achieves detectability of the faults, use the method SensorPlacementDetectability

as

1 sDet = model.SensorPlacementDetectability();
2 sDet {:}
3 ans =
4 ’Pz’ ’Q’
5

6 ans =
7 ’Pz’ ’Qv’ ’Qv3’

In this case, there are two minimal solutions where the first one is to measure the
variables {Pz, Q} and the second is {Pz, Qv, Qv3}4

If we want to add the first set of sensors, call AddSensors

1 model.AddSensors(sDet{1});

This command modifies the model model. In case you want a new object, with the
new sensors, without modifying the original model, write

1 model2 = model.AddSensors(sDet{1});

The isolability properties, as described in Section 5, after adding the detectability
sensors is shown in Figure 6. It is clear that all faults are detectable, but the isolation
performance is far from ideal.

f1 f5 f18 f4 f8 f9 f10 f11 f16 f7 f12 f13

f1

f5

f18

f4

f8

f9

f10

f11

f16

f7

f12

f13

Isolability matrix for 'Damadics benchmark'

(a) Isolability matrix

Variables
x Ps Pz Qc Fvcxf10DeltaPQ Qv Qv3 T1 xh P1 P2 PvDeltaP-a

E
qu

at
io

ns

e1

e2

e7

e9

e10

e17

e20

e3

e6

e8

e11

e21

e5

e15

e4

e12

e13

e14

e16

f1, f5

f4, f11

f7

f8

f9, f16

f10

f12

f13

f18

(b) Dulmage-Mendelsohn decomposition

Figure 6: Isolability properties after adding the detectability sensors.

If the isolability in Figure 6 is not sufficient, we can instead call the class method
SensorPlacementIsolability to find sets of sensors that not only detects fault but
also makes fault isolation possible. For the same example as above, the Matlab call
is

1 sIsol = model.SensorPlacementIsolability();
2 model3 = model.AddSensors(sIsol{1});

4 The example is taken from paper [10] and Damadics.m can be found in the examples directory.

8 residual generator design 18

There are 6 solutions, each involving 5 sensors.

1 >> sIsol
2

3 sIsol =
4

5 {1x5 cell } {1x5 cell } {1x5 cell } {1x5 cell } {1x5 cell } {1x5 cell }

Here, again, the first solution is added to the model and again, using the diagnos-
ability analysis methods from Section 5, results in Figure 7. Here it is clear that,
except for faults entering the model in the same equations ({ f1, f5}, { f4, f11}, and
{ f9, f16}), full isolability is achieved.

f1 f5 f4 f11 f7 f8 f9 f16 f10 f12 f13 f18

f1

f5

f4

f11

f7

f8

f9

f16

f10

f12

f13

f18

Isolability matrix for 'Damadics benchmark'

(a) Isolability matrix

Variables
FvcDeltaPT1 Q Qv3Pz Qc x xh Ps P1 P2 PvDeltaP-aQvxf10

E
qu

at
io

ns

e1

e7

e3

e6

e5

e15

e8

e11

e37

e9

e10

e36

e2

e4

e12

e13

e14

e16

e17

e34

e35

e38

f1, f5

f4, f11

f7

f8

f9, f16

f10

f12

f13

f18

(b) Dulmage-Mendelsohn decomposition

Figure 7: Isolability properties after adding isolability sensors.

8 residual generator design
In the literature, there are many different proposed approaches for residual gen-
eration, e.g., based on parity relations, Extended Kalman Filters, adaptive/high-
gain/sliding-observers and so on. In this toolbox, two basic approaches are imple-
mented to generate residual generators that are general enough to be automatic and
supported by structural analysis. It should be emphasized that these are not to be
accepted as the only or best solution, just two approaches that are particularly well
suited for automatic code generation. The first is here called sequential residual
generation and the second is a differential-algebraic observer technique suitable for
low-index problems.

8.1 Sequential residual generator design

A sequential residual generator, although the name may not be standard, the basic
approach is well known. The basic idea is that, given an overdetermined set of reference?

equations, find a computational sequence for the unknown variables, and then ver-
ify consistency of the set of equations and observations by inserting the variables
into the residual equations. Since dynamic systems are studied, questions arise
on how to deal with differential constraints, and in this framework there are two
ways; either you integrate or you differentiate. The code generated here can be
in so called derivative causality, integral causality, or mixed causality. If there are

8.1 Sequential residual generator design 19

algebraic loops in the computational sequence, the toolbox will use the equation
solving capabilities of the Symbolic Math Toolbox in Matlab. Works that describes
the basic procedure are [6, 16].

To describe the basic steps of the approach, consider an overdetermined set of
equations

gi(x, z, f) = 0, i = 1, . . . , n

A first step is to partition the set of equations into an exactly determined, with
respect to the unknown variables x, part and a residual equation part as

g1
i (x, z, f) = 0, i = 1, . . . , n1

gr
i (x, z, f) = 0, i = 1, . . . , nr

The exactly determined part g1 is then used to solve for x and compute x̂, which is
then inserted into the residual equation to compute a residual as

r = gr
i (x̂, z, f) = 0

If the model is dynamic, the computational sequence might include differentiations,
integrations or both. This is referred to as the sequential residual generator is in
derivative, integral, or mixed causality.

The toolbox supports this design methodology using the class methods Matching
and SeqResGen. The method Matching computes a computational sequence given
an exactly determined set of equations. Then, SeqResGen is called given a matching
and residual equations to generate the code. The examples below generates Mat-
lab code buyt the toolbox also supports generating C code that is Matlab callable.
See Section 8.2 for som further details on C code generation and compiling. As
an example, consider the case where the model is an MSO set, i.e., a minimally
structurally overdetermined set of equations. This means that by subtracting any
equation, what is left is an exactly determined set of equations. To generate a resid-
ual, where the first equation in an MSO set is used as residual equation, and the
rest is used to compute the unknown variables, the following code can be used

1 Gamma = model.Matching(setdiff(mso,mso{1})); % coompute matching
2 model.SeqResGen(Gamma, mso{1},’ResGen’);

which will create the file ResGen.m, implementing the residual generator. The gen-
erated code corresponds to the function

[rt, xt+1] = ResGen(zt, xt, θ, 1/ fs)

where zt and xt are the known signals and residual generator state at time point t, θ
the model parameters, and fs the sampling rate. See Appendix C.1 for an example
from the use case in Section 9. To use the generated function to compute a residual,
based on measurements z, something like this is used

1 for k=1:N
2 [r(k), state] = ResGen(z(k ,:), state , params, 1/fs);
3 end

The state consists of information about variables xi that are numerically integrated
and variables xd that are numerically differentiated according to

statet = (xit, xdt−1)

Basic structure of the generated code is shown in the pseudo-code below

1 function rt = ResGen(zt, statet, params, Ts)
2 % Initialize parameters
3 θ = params.θ;

8.1 Sequential residual generator design 20

4

5 % Initialize integral state variables
6 (xit, xdt−1) = state
7

8 % Residual generator body, sequential computations
9 x1t = . . .

10 . . .
11 xdt = d

dt (·)
12 . . .
13 xnt = . . .
14

15 % Compute residual value
16 rt = . . .
17

18 % Integrate state variables
19 xit+1 = xit +

∫ t+Ts
t xi′(τ) dτ

20

21 % Update state variables
22 state = (xit+1, xdt)
23 end

See the use case in Section 9 for further details.
The causality of the residual generator is an important property. For an MSO

set with n equations, with 1 more equation than unknown variables, and where
each subset of n− 1 equations is exactly determined, there are n possible sequential
residual generators. Although they are based on the same set of equations, they
might have dramatically different properties. One such, important, property is the
causality of the residual generator. To investigate, there is a convenience function
that automatically computes the causality of the sequential residual generator for
each choice of residual equation. The class method MSOCausalitySweep is called as

1 model.MSOCausalitySweep(mso)

which will output der, int, mixed, or algebraic for each case. For example, consider
an MSO set consisting of 6 equations. A sample output of MSOCausalitySweep is
then

1 >> model.MSOCausalitySweep(mso)
2 ’ int ’ ’mixed’ ’der’ ’mixed’ ’der’ ’ int ’

This means that using the first equation as a residual equation and the remaining 5
would lead to a sequential residual generator in integral causality. Using the second
as residual equation would result in a mixed causality residual generator and so on.

It is possible to explicitly specify how the residual equation shall be interpreted
in case it is a differential constraint. The options are derivative and integral and
corresponds to the alternatives

r = x−
∫

x′ dt, r = x′ − d
dt

x

where x and x′ are the variable and the corresponding computed derivative. In
Matlab, the key ’diffres’ is given to the method MSOCausalitySweep as

1 model.MSOCausalitySweep(mso, ’diffres’,’int’)
2 ’ int ’ ’mixed’ ’der’ ’mixed’ ’der’ ’ int ’

There is also the possibility to ask for a boolean variable indicating if it is possible
to realize a residual generator for a given MSO set in derivative or integral causality
respectively. The call looks like

8.2 Generating and compiling generated C code 21

1 model.MSOCausalitySweep(mso, ’causality’,’der’)

8.2 Generating and compiling generated C code

The toolbox supports generating C code that can be compiled using the mex func-
tionality in Matlab. The call to generate C code is similar to generating Matlab code,
only passing the language option to the SeqResGen as

1 model.SeqResGen(Gamma, mso{1},’ResGen’, ’language’, ’C’);

This will generate the file ResGen.cc that can be compiled with any C++ compiler5.
To compile in Matlab, write

1 >> mex ResGen.cc
2 Building with ’Xcode Clang++’.
3 MEX completed successfully.

This function can be used exactly the same way as the Matlab counterpart. The func-
tion generated as above, and in Matlab mode, conputes the residual for one sample
at a time. In C mode, a batch function can also be generated. In the batch mode,
not only observations at one time-point is given to the reisudlal generator, but an
entire dataset. The computational speedup is generally significant. To generate the
batch version of the residual generator, write

1 model.SeqResGen(Gamma, mso{1},’ResGenb’, ’language’, ’C’, ’batch’, true);

and the file ResGenb.cc is compiled exactly the same way as above.
If the model has external functions, as described in Section 2.2.2, these functions

has to be implemented also in C code, compiled, and linked with the generated
residual generator code. For example, say tat all external functions are implemented
in a file externalfuns.cc with a corresponding header file externalfuns.h. Then,
with the external option, the generated code will include the external function
headers.

1 model.SeqResGen(Gamma, mso{1},’ResGen’, ’language’, ’C’, ...
2 ’external ’, ’externalfuns.h’);

Then, compiling and linking the whole thing is then done for example by

1 >> mex ResGen.cc externalfuns.cc
2 Building with ’Xcode Clang++’.
3 MEX completed successfully.

8.3 Observer based residual generator design

This approach aims at generating code for an observer that estimates the unknown
variables and computes a residual. The residual generator will be formulated as a
DAE, which can be integrated using any standard ODE solver which means that it is
only applicable to low-index problems [14, 8]. To describe the method, partition the
unknown variables x into x1 which are state variables, and x2 which are algebraic
variables. Then, the model can be described by

gi(dx1, x1, x2, z, f) = 0 i = 1, . . . , n

dx1 =
d
dt

x1 i = 1, . . . , m
(4)

5 The current implementation utilizes some C++ functionality and therefore the file need to be compiled
with a C++ compiler.

8.3 Observer based residual generator design 22

where the dynamic relations has been explicitly described. Important note, the
implemented approach is only applicable to models of low (structural) differential
index [8], i.e., state-space models and implicit state-space models. This restriction is
important and note that if MSO sets, or other submodels, are considered when gen-
erating residuals, the low-index property is not necessarily fulfilled even though the
original model is in state-space form. Loosely, the low-index property corresponds
to that there exists, locally, unique solutions for the highest ordered derivatives in
gi. Let g = (g1, . . . gn), then the model (4) is of low index at x = x0 and z = z0 if(

∂g
∂dx1

∂g
∂x2

)∣∣∣
x=x0, z=z0

has full column rank. In the toolbox, structural low index is verified which corre-
sponds to that there exists a complete matching of the highest ordered derivatives
in the equations g.

ẋ1 = g1(x1, x2, z, f)

0 = g2(x1, x2, z, f),
∂g2

∂x2
is full column rank

0 = gr(x1, x2, z, f)

(5)

In the toolbox, a test on if the model is structurally high-index or not using the call
IsHighIndex

1 model.IsHighIndex()

which tests if there exists a low-index submodel or not. To test if a specified sub-
model, e.g., an MSO set is high-index, write

1 model.IsHighIndex(mso)

where mso is a vector of equation indices. The method IsHighIndex determines if
the model has low structural differential index, i.e., 0 or 1. To determine the exact
structural index, as could be interesting to analyze in high-index problems, then the
method Pantelides from [13] can be directly applied.

1 strucIndex = model.Pantelides()

Note that method Pantelides can only be called on exactly determined systems.
For a low-index system, equations (5) is used to form the DAE observer, with a

feedback gain K(x, z) introduced as

˙̂x1 = g1(x̂1, x̂2, z) + K(x̂, z)gr(x̂1, x̂2, z)

0 = g2(x̂1, x̂2, z)

This observer estimates the unknown states x1 and the algebraic variables x2. Then,
the residual equations in gr from (5) can be used to compute the residual.

r = gr(x̂1, x̂2, z)

To generate code, suitable to be integrated using any solver that is suitable for low-
index DAE:s, is generated using the class method ObserverResGen

1 model.ObserverResGen(mso, ’ResGen’);

This call will generate the file ResGen.m, see Appendix C.4 for an example from
the use case in Section 9. Two possible types of integrators that might be used are
solvers based on Backward Differentiation Formula (BDF) or implicit Runge-Kutta
(IRK) methods [2]. Possible Matlab solvers are ode15s and ode23t.

9 use case 23

Let an extended state vector be w = (x̂1, x̂2, r), and the dimensions for x̂1, x̂2, and
r respectively be n1, n2, and nr. The generated code corresponds to the function
F(w, z) in the DAE model

Mẇ =

g1(x̂1, x̂2, z) + K(x̂, z)gr(x̂1, x̂2, z)
g2(x̂1, x̂2, z)

r− gr(x1, x2, z)

 = F(w, z) (6)

where the mass matrix M is given by

M =

(
In1 0n1×(n2+nr)

0(n2+nr)×n1
0(n2+nr)×(n2+nr)

)
A DAE model in the form

Mẇ = f (w)

where the mass matrix M can be integrated using stiff, implicit ODE solvers. For
example, the standard Matlab ODE solver ode15s can be directly used.

As an example of a function call to use the generated residual generator, let z
and t be the observations and corresponding time stamps and let K be a constant
observer gain. Then the residual generator can be simulated by:

1 M = [eye(2) zeros (2,4); zeros (4,6)];
2 [~,w] = ode15s(@(ts,x) ResGen(x, interp1(t ,z, ts), K, params), ...
3 t , x0, odeset(’Mass’,M));
4 r=w(:,6)

where, in this case, n1 = 2, n2 = 3, and nr = 1.
As with any feedback system, the feedback gain need to be determined to ensure

estimator stability. In general, this is a difficult problem but the toolbox can provide
some guidance. By supplying operating point and known variables, linearization
matrices can be automatically computed. Let

Ai,j =
∂gi
∂xj

∣∣∣∣∣
x=x0, z=z0

, i, j = 1, 2

Cj =
∂gr

∂xj

∣∣∣∣∣
x=x0, z=z0

, j = 1, 2

Let the estimation error be e = x1 − x̂1, then the linearized error dynamics of the
observer is ė = (A− KC)e with

A = (A11 − A12 A−1
22 A21)

C = −(C1 − C2 A−1
22 A21)

The low-index property of the model ensures that matrix A22 is invertible. To obtain
the matrices A and C, add options linpoint and parameters to the method call like
the following

1 [A,C] = model.ObserverResGen(mso, ’ResGen’, ’linpoint’, linpoint, ...
2 ’parameters’, params);

See further details in the use case in Section 9.4 for examples on how to form
linpoint and parameters, and also how to compute a locally stabilizing feedback
gain K.

9 use case
This section shows a simple use case how the toolbox can be used. As an example
model, the three-tank model from [6] is used. All code is available, and possible to

9.1 Model definition 24

run, in file usecase.m found in the examples/ThreeTankSimulation/ directory. The
same usecase, but with C-generated residual generators is found in file usecase_c.m

in the same directory. The three-tank system is shown in Figure 8 and simple model

�� �� ��
�� �� ��

�� ��

��

Figure 8: Diagram of the three-tank system.

of the system is

e1 : q1 =
1

RV1
(p1 − p2) e7 : y1 = p1

e2 : q2 =
1

RV2
(p2 − p3) e8 : y2 = q2

e3 : q3 =
1

RV3
(p3) e9 : y3 = q0

e4 : ṗ1 =
1

CT1
(q0 − q1) e10 : ṗ1 =

dp1

dt

e5 : ṗ2 =
1

CT2
(q1 − q2) e11 : ṗ2 =

dp2

dt

e6 : ṗ3 =
1

CT3
(q2 − q3) e12 : ṗ3 =

dp3

dt

where pi is the pressure in tank i, qi the flow through valve i, RVi the flow resistance
of valve i, and CTi the capacitance of tank i. Three sensors y1, y2, and y3, measure p1,
q2, and q0, respectively. For this study, six parametric faults have been considered
in the plant: change in capacity of tanks CT1, CT2, and CT3, and partial blocks in
valves RV1, RV2, RV3.

9.1 Model definition

Here, the model will be defined using symbolic expressions. Therefore, the model
is defined using the following Matlab code

1 modelDef.type = ’Symbolic’;
2 modelDef.x = {’p1’,’p2 ’,’ p3 ’,’ q0 ’,’ q1 ’,’ q2 ’,’ q3 ’,’ dp1 ’,’dp2 ’,’dp3’};
3 modelDef.f = {’fV1 ’,’ fV2 ’,’ fV3 ’,’ fT1 ’,’ fT2 ’,’ fT3 ’};
4 modelDef.z = {’y1 ’,’y2 ’,’ y3 ’};
5 modelDef.parameters = {’Rv1’, ’Rv2’, ’Rv3’, ’CT1’, ’CT2’, ’CT3’};
6

7 syms(modelDef.x{:})
8 syms(modelDef.f{:})
9 syms(modelDef.z{:})

10 syms(modelDef.parameters{:})
11

12 modelDef.rels = {q1==1/Rv1∗(p1−p2) + fV1,... % e1

13 q2==1/Rv2∗(p2−p3) + fV2, ... % e2

14 q3==1/Rv3∗p3 + fV3,... % e3

15 dp1==1/CT1∗(q0−q1) + fT1,... % e4

9.2 Isolability analysis 25

16 dp2==1/CT2∗(q1−q2) + fT2, ... % e5

17 dp3==1/CT3∗(q2−q3) + fT3, ... % e6

18 y1==p1, y2==q2, y3==q0,... % e7, e8, e9

19 DiffConstraint(’dp1 ’,’p1 ’),... % e10

20 DiffConstraint(’dp2 ’,’p2 ’),... % e11

21 DiffConstraint(’dp3 ’,’p3 ’),... % e12

22 };
23

24 model = DiagnosisModel(modelDef);
25 model.name = ’Three tank system’;

With a model object, the model structure can be plotted using the simple com-
mand

1 model.PlotModel();

which will produce Figure 9.

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

DI

DI

DI

p1 p2 p3 q0 q1 q2 q3 dp
1

dp
2

dp
3

fV
1

fV
2

fV
3

fT
1

fT
2

fT
3 y1 y2 y3

Three tank system

Figure 9: Three tank model structure.

9.2 Isolability analysis

Since sensors already have been added in the model definition, one next step is
to see what kind of isolability properties that are possible (structurally). To do
isolability analysis, as described in [6], the class method IsolabilityAnalysis can
be used. Here, it is possible to show what isolability that is possible using derivative,
integral, or mixed causality residual generators. First, to look at the derivative and
integral causality cases, the commands

1 model.IsolabilityAnalysis (’ causality ’,’ der ’);
2 model.IsolabilityAnalysis (’ causality ’,’ int ’);

produces Figures 10-a and b. See [6] for details on how to interpret the figures.
Figure 11-a shows the full structural isolability properties of the model, i.e., per-

formance in mixed causality. The figure tells us that it is possible to 1) uniquely
isolate faults f V1, f T1, and f T2, and 2) the group of faults { f V2, f V3, f T3} can
be detected and isolated from the other faults, but can not be separated from each
other. Figure 11-b shows the corresponding Dulmage-Mendelsohn decomposition,
with indication of faults and canonical decomposition of the overdetermined part
of the model. In this case, the model only consist of an overdetermined part. The
following commands in Matlab produces the figures

9.3 Find overdetermined set of equations 26

fV2 fV3 fT3 fT2 fV1 fT1

fV2

fV3

fT3

fT2

fV1

fT1

Table II (p. 1223) - isolability with derivative causality

(a) Derivative causality

fV2 fV3 fT3 fT1 fT2 fV1

fV2

fV3

fT3

fT1

fT2

fV1

Table III (p. 1224) - isolability with integral causality

(b) Integral causality

Figure 10: Isolability matrices in derivative and integral causality.

1 model.IsolabilityAnalysis ();
2 model.PlotDM(’eqclass’, true, ’ fault ’, true);

fV1 fV2 fV3 fT3 fT1 fT2

fV1

fV2

fV3

fT3

fT1

fT2

Table IV (p. 1224) - isolability with mixed causality

(a) Mixed causality isolability matrix

Variables
p3 q3 dp3 q0 dp1 dp2 p1 p2 q1 q2

E
qu

at
io

ns

e2

e3

e6

e12

e4

e9

e10

e5

e11

e1

e7

e8

fV1

fV2

fV3

fT1

fT2

fT3

(b) Dulmage-Mendelsohn

Figure 11: Isolability analysis in the mixed causality case, together with the Dulmage-
Mendelsohn decomposition. The figure shows the canonical decomposition of
the overdetermined part, with indications where the faults appear in the model.

With the decomposition, the isolability properties of mixed causality case is clearly
visible since the faults appear in different equivalence classes, except for the group
{ f V2, f V3, f T3} which appears in the same class.

9.3 Find overdetermined set of equations

Let’s say we are happy with the isolability performance in Figure 11, a next step is
to design residual generators. One way to do this is to find overdetermined set of
equations and use those to design residual generators. For this, we compute the set
of MSO sets, i.e., the set of minimally structurally overdetermined sets of equations,
see [11] for full details on how this is done. The Matlab command

1 msos = model.MSO();

9.4 Design residual generators 27

y3

e9

q0

y1

e7

p1

e10

ṗ1

e4

q1
e1

p2

e11

ṗ2

y2

e8

q2

e5

r

Figure 12: Residual r1, sequential residual generator in derivative causality based on MSO
setM2.

gives the following 6 MSO sets

M1 = {e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}
M2 = {e1, e4, e5, e7, e8, e9, e10, e11}
M3 = {e1, e2, e3, e5, e6, e7, e8, e12, e11}
M4 = {e1, e2, e3, e4, e6, e7, e8, e9, e10, e12}
M5 = {e1, e2, e3, e4, e5, e6, e8, e9, e10, e11, e12}
M6 = {e1, e2, e3, e4, e5, e6, e7, e9, e10, e11, e12}

(7)

This means that these 6 are the minimal sets of equations that has redundancy and
therefore can be used to design residual generators.

9.4 Design residual generators

A next step is to use these overdetermined sets of equations to generate residu-
als. For demonstration purposes, 4 different designs will be made. The first three
are sequential residual generators, one in derivative causality (r1), one in integral
causality (r2), and one in mixed causality (r3). The forth residual generator (r4) will
be designed using a simple observer based approach. Residual generators r1, r2 and
r4 will use MSO setM2 in (7) and r3 will useM1.

The first residual generator is corresponds to Fig. 2 in [6], that use equation e5
as a residual equation and the remaining, exactly determined, equations in M2
to compute the unknown variables. Figure 12 shows the corresponding computa-
tional graph. It is clear that the residual generator is in derivative causality, since all
differential constraints (indicated in red in the figure) computes the differentiated
variable from the non-differentiated. To generate code for the residual generator,
first the matching is found using all equations but e5, then the Matlab code is gen-
erated based on this matching. The corresponding Matlab code is

1 Gamma1 = model.Matching(setdiff(msos{2},5)); % compute matching
2 model.SeqResGen(Gamma1, 5, ’ResGen1’);

and the generated code is shown in Appendix C.1.
If using e7 instead of e5 as a residual equation, with the same MSO set, we obtain

a residual generator in integral causality instead. The corresponding computational
graph, same as Fig. 3 in [6], is shown in Figure 13. It is clear that the residual gen-
erator is in integral causality, since all differential constraints computes the integral
of a differentiated variable. Code generation is done as before,

1 Gamma2 = model.Matching(setdiff(msos{2},7)); % compute matching
2 model.SeqResGen(Gamma2, 7, ’ResGen2’);

and the generated code is included in Appendix C.2.
To show an example of a sequential residual generator in mixed causality, i.e.,

where both differentiation and integration is used in the computation of the resid-
ual, consider MSO setM1 with equation e2 as residual equation. The computational
graph is shown in Figure 14, which corresponds to Fig. 12 in [6]. Code generation
is done again in the same way

9.5 Isolability properties of residual generators 28

y3

e9

q0 e4

ṗ1

e10

p1

q1

e1

y2

e8

q2 e5

ṗ2
e11

p2

y1

e7

r

Figure 13: Residual r2, sequential residual generator in integral causality based on msoM2.

y3

e9

q0

y1

e7

p1

e10

ṗ1

e4

q1 e5

ṗ2

e11

p2

e6

ṗ3

e12

p3
q3

e3
y2

e8

q2

e2

r

Figure 14: Residual r3, sequential residual generator in mixed causality based on msoM1.

1 Gamma3 = model.Matching(setdiff(msos{1},2)); % compute matching
2 model.SeqResGen(Gamma3, 2, ’ResGen3’);

and the resulting code is shown in Appendix C.3.
In the fourth residual generator, mso M2 is again used but now using an ob-

server approach. Then, no residual equation need to be specified, the approach
chooses residual equations automatically. Note that this approach is only applica-
ble to low-index problems. If a linearization point and values on the parameters
are provided, A and C matrices are computed such that a feedback gain can be
designed to (locally) stabilize the observer. In code, this corresponds to

1 linpoint .x0 = [0,0,0,0,0,0]; linpoint .z0 = [0;0;0];
2 params.Rv1 = 1; params.Rv2 = 1; params.Rv3 = 1;
3 params.CT1 = 1; params.CT2 = 1; params.CT3 = 1;
4 [A,C] = model.ObserverResGen(msos{2}, ’ResGen4’, ’linpoint’, linpoint ,...
5 ’parameters’, params);

and the generated code is included in Appendix C.4. To find a feedback gain K
using pole placement, a simple approach is for example

1 K = place(A’,C ’,[−0.2,−0.3])’;

9.5 Isolability properties of residual generators

The isolability analysis in Section 9.2 was done for the model, not these four par-
ticular residual generators. This can be done using the class methods FSM and
IsolabilityAnalysisFSM. First, the fault signature matrix (FSM), i.e., which faults
each residual is (structurally) sensitive to is determined using FSM, and then this
fault signature matrix is used to compute the isolability properties using IsolabilityAnalysisFSM.
The results are shown in Figure 15 and the figures are generated using the com-
mands

9.6 Simulation results 29

Fault
fV1 fV2 fV3 fT1 fT2 fT3

R
es

id
ua

l

r1

r2

r3

r4

Fault Signature Matrix

(a) Fault signature matrix

fV1 fV2 fV3 fT3 fT1 fT2

fV1

fV2

fV3

fT3

fT1

fT2

Isolability matrix for a given FSM in 'Three tank system'

(b) Isolation performance

Figure 15: Fault signature matrix (FSM) and isolability properties for the four residuals r1,
. . . r4.

1 FSM = model.FSM({msos{2}, msos{2}, msos{1}, msos{2}});
2 spy(FSM,30)
3 set (gca, ’YTick’, 1:4, ’XTick’, 1:model.nf ,...
4 ’YTickLabel’, {’ r1 ’, ’r2 ’, ’r3 ’, ’r4 ’},’ XTickLabel’,model.f, ’box’, ’ off ’);
5 xlabel (’ Fault ’)
6 ylabel (’ Residual’)
7 title (’ Fault Signature Matrix’)
8

9 model.IsolabilityAnalysisFSM(FSM);

Figure 15-b should be compared to Figure 11-a and it is clear that the four residuals
chosen does not reach the best possible isolation performance. This is not surprising
since only MSO sets M1 and M2 were used to generate the four residuals. If, for
example residual generators for M1, M2, M3, and M4 were to be designed, full
structural isolability would be achieved.

9.6 Simulation results

The system can now be simulated in all fault modes. For the simulations, a simple
LQ-controller is designed such that the level in tank 1 follows a reference signal. A
sample, noise-free, simulation result for the no-fault case is shown in Figure 16. A
simulation of the faulty case fRv1 is shown in Figure 17 where a ramp fault is added,
starting at t = 6 and reaching top value at t = 10.

To simulate the residual generators, residuals r1, r2, and r3 are implemented in
discrete time. Let z and t be the observations and time stamps respectively, then
simulation of the residual generators is done by

1 for k=1:N
2 [r1(k), state1] = ResGen1(z(k,:), state1 , params, 1/fs);
3 [r2(k), state2] = ResGen2(z(k,:), state2 , params, 1/fs);
4 [r3(k), state3] = ResGen3(z(k,:), state3 , params, 1/fs);
5 end

Residual generator r4 was created in continuous time, and therefore one of Mat-
lab’s standard ODE integrators are used. The code corresponds to a dynamic sys-
tem in the form (6) and note that a stiff, implicit, solver is needed to integrate the

9.6 Simulation results 30

0 2 4 6 8 10 12 14 16 18 20

T
an

k
w

at
er

 p
re

ss
ur

e
0

0.5

1

1.5
Fault free simulation (without noise)

p1
p1ref
p2
p3

0 2 4 6 8 10 12 14 16 18 20

q0

0

0.5

1

1.5

2

t [s]
0 2 4 6 8 10 12 14 16 18 20

F
au

lt
si

gn
al

-1

-0.5

0

0.5

1

Figure 16: Simulation of fault free operation of the three-tank system.

0 2 4 6 8 10 12 14 16 18 20

T
an

k
w

at
er

 p
re

ss
ur

e

0

0.5

1

1.5
Fault scenario Rv1 (without noise)

p1
p1ref
p2
p3

0 2 4 6 8 10 12 14 16 18 20

q0

0

0.5

1

1.5

2

t [s]
0 2 4 6 8 10 12 14 16 18 20

F
au

lt
si

gn
al

0

0.1

0.2

0.3

Figure 17: Simulation of the faulty case, fRv1, of the three-tank system.

9.6 Simulation results 31

observer. In our case, we chose the solve ode15s. The code to integrate the residual
generator is

1 M4 = [eye(2) zeros (2,4); zeros (4,6)];
2 [~,x] = ode15s(@(ts,x) ResGen4(x, interp1(t ,z, ts), K4, params), ...
3 t , x0, odeset(’Mass’,M4, ’AbsTol’, 1e−3));
4 r4 = x (:,6);

where we use interp1 to interpolate measurement values in between sampling
points. For this fault mode, residuals r1, r2, and r4 shall indicate a fault while
r3 shall not, see Figure 15. Figure 18 shows the residuals. It is clear that, after the

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

r1 (seq/derivative/discrete)

0 2 4 6 8 10 12 14 16 18 20

-0.2
-0.1

0
0.1
0.2

r2 (seq/integral/discrete)

0 2 4 6 8 10 12 14 16 18 20

-1

0

1

r3 (seq/mixed/discrete)

t [s]
0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5
r4 (DAE observer w. feedback/continiuous)

Figure 18: Residual values for residuals r1, r2, r3, and r4 for the fault mode fRv1 shown in
Figure 17.

initial transient all residuals react as expected. It is also clear that r1 is more noisy
and that is due to that this residual is in derivative causality and the approximate
differentiation introduces this error. It is also clearly visible that residual r1 only
reacts to changes in the fault, i.e., only reacts in the interval [6, 10]. Remember that
residuals r2 and r4 are based on exactly the same set of equations as r1 and this
clearly shows how different ways of realizing a residual generator, based on the
same set of equations has different performance and properties.

A summary of class methods 32

appendix

a summary of class methods
Below is a table that summarizes all the class methods for DiagnosisModel objects.
The description is brief and the most complete documentation can be found by
starting the documentation browser using doc DiagnosisModel, or accessing the
help documentation by

1 help DiagnosisModel.methodName

Method name Description

Model object definition and manipulation
DiagnosisModel Constructor for model object used for diagno-

sis analysis and residual generator code gener-
ation

AddSensors Add sensors to a model
AddEquations Add equations to a model
RemoveFaultVariables Remove fault variables from a model
ReplaceEquations Replace equations in a model
LumpDynamics Lump dynamic variables for structural model
Structural Convert a symbolic model to a structural model
copy Make a new copy of the model object

Model properties
x Unknown variables
f Fault variables
z Known variables
X Incidence matrix for unknown variables
F Incidence matrix for fault variables
Z Incidence matrix for known variables
e Equation names
name Model name
type Model type
P List of possible sensor locations
Pfault Which sensor locations may be faulty
parameters List of model parameter names
syme Symbolic equations

Model exploration
Lint Print model information and check for incon-

sistencies
PlotDM Plots Dulmage-Mendelsohn decomposition of

model structure
PlotModel Plots a model object
SubModel Extract submodel
MeasurementEquations Extract indices to measurement equations
DifferentialConstraints Extract indices to differential constraints and

variables in the model
GenSimulationModel Generate code for simulation model, usable di-

rectly with Matlabs ODE/DAE solvers. Model
must be low-index and exactly determined.

continued on next page

A summary of class methods 33

continued from previous page
Method name Description

ne Number of equations in model
nf Number of fault variables in model
nx Number of unknown variables in model
nz Number of known variables in model
Redundancy Compute the structural degree of redundancy

of a model
MTESRedundancy Compute the structural degree of redundancy

for an MTES set
srank Compute the structural rank of the incidence

matrix for the unknown variables
AlgebraicVariables Extract the algebraic variables of the model
DynamicVariables Extract the dynamic variables of the model
IsStatic Is the set of model equations static?
IsDynamic Is the set of model equations dynamic?
IsHighIndex Is the model of high structural differential in-

dex?
IsLowIndex Is the model of low structural differential in-

dex?
IsPSO Is the model proper structurally overdeter-

mined?
IsObservable Is the (sub-)model structurally observable?
Pantelides Run Pantelides algorithm for determining

structural index and differentiation vector
BipartiteToLaTeX Generate a LaTeX document with the bipartite

graph correponding to the structural model
Diagnosability analysis

DetectabilityAnalysis Performs a structural detectability analysis
IsolabilityAnalysis Perform structural single fault isolability analy-

sis of model
IsolabilityAnalysisArrs Perform structural single fault isolability analy-

sis of a set of ARRs
IsolabilityAnalysisFSM Perform structural single fault isolability analy-

sis of a Fault Signature Matrix (FSM)
Sensor placement

PossibleSensorLocations Set possible sensor locations
SensorLocationsWithFaults Set possible sensor locations that has faults in

new sensors
SensorPlacementDetectability Determine minimal set of sensors to achieve de-

tectability
SensorPlacementIsolability Determine minimal set of sensors to achieve

maximal fault isolability
CompiledMHS Use the compiled minimal-hitting set algo-

rithm if available (not recommended)
Overdetermined equations

MSO Compute the set of MSO sets
MTES Computes the set of minimal test equation sup-

port
FSM Compute the fault signature matrix (FSM)
TestSelection A minimal hitting set based test selection ap-

proach
continued on next page

B compile c++ implementations 34

continued from previous page
Method name Description

CompiledMSO Use the compiled MSO algorithm if available
Residual generation

ObserverResGen Generate Matlab code for obsserver based
residual generator

Matching Compute a matching in the model for a set of
equations

PlotMatching Plot a matching
SeqResGen Generate Matlab code for sequential residual

generator
MSOCausalitySweep For a given MSO set, determine causality for se-

quential residual generator for each n residual
equations

b compile c++ implementations
To compile the C++ sources, it is required that a functioning compiler is installed
and configured for use with Matlab. Instructions below are directly applicable for
Unix/MacOS systems. There are binaries included in the distribution if you do not
want to compile the sources yourself. In the directory binaries there are compiled
files for 64 bit Linux and MacOS. Copy the files corresponding to your system into
the src directory and hope for the best.

b.1 Minimal Hitting Set

There is a compiled C++ implementation of the minimal hitting set algorithm used.
To compile, open Matlab and go to src directory. To compile, type (output from an
MacOS system)

1 >> mex MHScompiled.cc
2 Building with ’Xcode Clang++’.
3 MEX completed successfully.

Verify that everything has worked by

1 >> exist (’ MHSCompiled’)
2

3 ans =
4

5 3

The use of the compiled algorithm is optional, full functionality is obtained with
the Matlab implementation of the minimal hitting set algorithm.

b.2 MSO algorithm

The MSO algorithm uses a library for computing with sparse matrices. The sparse
matrix library is part of the software SuiteSparse and can be downloaded from http:

//faculty.cse.tamu.edu/davis/suitesparse.html and is described in [3]. You do
not have to compile and install the entire SuiteSparse library, only the CSparse part.
The CSparse source is included in the zip-archive.

To install on a Linux or a Mac with MacOS with developer tools installed, go to
the CSparse directory and write6 at a terminal prompt, not in Matlab:

6 Remark for Linux users: On my Linux system, I had to add the compiler flag -fPIC on the CF line in file
SuiteSparse/CSparse/Lib/Makefile.

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html

B.2 MSO algorithm 35

1 > cd CSparse
2 > make

When the CSParse library is compiled, to compile the MSO algorithm, open Mat-
lab and go to the src directory and type:

1 %% Specify installation directory for CSparse
2 CSPARSEDIR = ’../CSparse’;
3

4 % Derive include and lib directory
5 CSPARSEINC=[’−I’ fullfile(CSPARSEDIR, ’/Include’)];
6 CSPARSELIB=[’−L’ fullfile(CSPARSEDIR, ’/Lib’)];
7

8 %% Compile sources and link mex−file
9

10 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’MSOAlg.cc’);
11 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’SparseMatrix.cc’);
12 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’StructuralAnalysisModel.cc’);
13 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’FindMSOcompiled.cc’);
14

15 % Link
16 mex(CSPARSELIB, ’FindMSOcompiled.o’, ’SparseMatrix.o’, ’StructuralAnalysisModel.o’, ’MSOAlg.o’, ’−lcsparse’);
17

18 %Specify installation directory for CSparse
19 CSPARSEDIR = ’[INSTALLATIONDIR]’;
20

21 % Derive include and lib directory
22 CSPARSEINC=[’−I’ fullfile(CSPARSEDIR, ’/Include’)];
23 CSPARSELIB=[’−L’ fullfile(CSPARSEDIR, ’/Lib’)];
24

25 % Compile sources
26 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’MSOAlg.cc’);
27 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’SparseMatrix.cc’);
28 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’StructuralAnalysisModel.cc’);
29 mex(’−c’, ’−largeArrayDims’, CSPARSEINC,’FindMSOcompiled.cc’);
30

31 % Link
32 mex(CSPARSELIB, ’FindMSOcompiled.o’, ’SparseMatrix.o’, ...
33 ’StructuralAnalysisModel.o’, ’MSOAlg.o’, ’−lcsparse’);

On a Mac system, you might get warnings when linking due to different deploy-
ment versions used by the Matlab compiler and the compiler used, “ld: warning: ob-
ject file (../CSparse/Lib/libcsparse.a(cs_add.o)) was built for newer OSX version (10.12) than
being linked (10.9)”. To avoid this warning, recompile CSparse with the build version
of Matlab by setting the environment variable MACOSX_DEPLOYMENT_TARGET=10.9 be-
fore running make to build CSparse.

Verify that everything has worked and the binary has been generated by

1 >> exist (’ FindMSOcompiled’)
2

3 ans =
4

5 3

C generated code in use-case 36

c generated code in use-case
Below are the generated code for the four residual generators in the use case in
Section 9.

c.1 ResGen1

function [r, state] = ResGen1(z,state,params,Ts)

% RESGEN1 Sequential residual generator for model ’Three tank system’

% Causality: Der

%

% Structurally sensitive to faults: fV1, fT1, fT2

%

% Example of basic usage:

% Let z be the observations and N the number of samples, then

% the residual generator can be simulated by:

%

% for k=1:N

% [r(k), state] = ResGen1(z(k,:), state, params, 1/fs);

% end

% where state is a structure with the state of the residual generator.

% The state has fieldnames: p1, p2

% File generated 29-Feb-2016 16:22:07

% Parameters

Rv1 = params.Rv1;

CT1 = params.CT1;

CT2 = params.CT2;

% Known variables

y1 = z(1);

y2 = z(2);

y3 = z(3);

% Initialize state variables

p1 = state.p1;

p2 = state.p2;

% Residual generator body

q2 = y2; %% e8

q0 = y3; %% e9

p1 = y1; %% e7

dp1 = ApproxDiff(p1,state.p1,Ts); %% e10

q1 = q0-CT1*dp1; %% e4

p2 = p1-Rv1*q1; %% e1

dp2 = ApproxDiff(p2,state.p2,Ts); %% e11

r=dp2-(q1-q2)/CT2; %% e5

% Update state variables

state.p1 = p1;

state.p2 = p2;

end

function dx=ApproxDiff(x,xold,Ts)

if length(xold)==1

dx = (x-xold)/Ts;

elseif length(xold)==2

dx = (3*x-4*xold(1)+xold(2))/2/Ts;

C.2 ResGen2 37

else

error(’Differentiation of order higher than 2 not supported’);

end

end

c.2 ResGen2

function [r, state] = ResGen2(z,state,params,Ts)

% RESGEN2 Sequential residual generator for model ’Three tank system’

% Causality: Int

%

% Structurally sensitive to faults: fV1, fT1, fT2

%

% Example of basic usage:

% Let z be the observations and N the number of samples, then

% the residual generator can be simulated by:

%

% for k=1:N

% [r(k), state] = ResGen2(z(k,:), state, params, 1/fs);

% end

% where state is a structure with the state of the residual generator.

% The state has fieldnames: p2, p1

% File generated 29-Feb-2016 16:22:09

% Parameters

Rv1 = params.Rv1;

CT1 = params.CT1;

CT2 = params.CT2;

% Known variables

y1 = z(1);

y2 = z(2);

y3 = z(3);

% Initialize state variables

p2 = state.p2;

p1 = state.p1;

% Residual generator body

q2 = y2; %% e8

q0 = y3; %% e9

q1 = (p1-p2)/Rv1; %% e1

dp2 = (q1-q2)/CT2; %% e5

dp1 = (q0-q1)/CT1; %% e4

r=-p1+y1; %% e7

% Update integrator variables

p2 = ApproxInt(dp2,state.p2,Ts); %% e11

p1 = ApproxInt(dp1,state.p1,Ts); %% e10

% Update state variables

state.p2 = p2;

state.p1 = p1;

end

function x1=ApproxInt(dx,x0,Ts)

x1 = x0 + Ts*dx;

end

C.3 ResGen3 38

c.3 ResGen3

function [r, state] = ResGen3(z,state,params,Ts)

% RESGEN3 Sequential residual generator for model ’Three tank system’

% Causality: Mixed

%

% Structurally sensitive to faults: fV2, fV3, fT1, fT2, fT3

%

% Example of basic usage:

% Let z be the observations and N the number of samples, then

% the residual generator can be simulated by:

%

% for k=1:N

% [r(k), state] = ResGen3(z(k,:), state, params, 1/fs);

% end

% where state is a structure with the state of the residual generator.

% The state has fieldnames: p3, p2, p1

% File generated 29-Feb-2016 16:22:12

% Parameters

Rv2 = params.Rv2;

Rv3 = params.Rv3;

CT1 = params.CT1;

CT2 = params.CT2;

CT3 = params.CT3;

% Known variables

y1 = z(1);

y2 = z(2);

y3 = z(3);

% Initialize state variables

p3 = state.p3;

p2 = state.p2;

p1 = state.p1;

% Residual generator body

q2 = y2; %% e8

q0 = y3; %% e9

q3 = p3/Rv3; %% e3

dp3 = (q2-q3)/CT3; %% e6

p1 = y1; %% e7

dp1 = ApproxDiff(p1,state.p1,Ts); %% e10

q1 = q0-CT1*dp1; %% e4

dp2 = (q1-q2)/CT2; %% e5

r=q2-(p2-p3)/Rv2; %% e2

% Update integrator variables

p3 = ApproxInt(dp3,state.p3,Ts); %% e12

p2 = ApproxInt(dp2,state.p2,Ts); %% e11

% Update state variables

state.p3 = p3;

state.p2 = p2;

state.p1 = p1;

end

function dx=ApproxDiff(x,xold,Ts)

if length(xold)==1

C.4 ResGen4 39

dx = (x-xold)/Ts;

elseif length(xold)==2

dx = (3*x-4*xold(1)+xold(2))/2/Ts;

else

error(’Differentiation of order higher than 2 not supported’);

end

end

function x1=ApproxInt(dx,x0,Ts)

x1 = x0 + Ts*dx;

end

c.4 ResGen4

function dx = ResGen4(x,z,K,params)

% RESGEN4 Observer based residual generatorfor model ’Three tank system’

%

% Structurally sensitive to faults: fV1, fT1, fT2

%

% Example of basic usage:

% Let z and t be the observations and corresponding timestamps. Let K be the observer gain,

% then the residual generator can be simulated by:

%

% [~,x] = ode15s(@(ts,x) ResGen4(x, interp1(t,z,ts), K, params), t, x0, odeset(’Mass’,M));

%

% where the mass matrix M is [eye(2) zeros(2,4);zeros(4,6)]

% The residual after integration is then r=x(:,6)

% File generated 29-Feb-2016 16:22:13

% Parameters

Rv1 = params.Rv1;

CT1 = params.CT1;

CT2 = params.CT2;

% Known variables

y1 = z(1);

y2 = z(2);

y3 = z(3);

% Model variables

p1 = x(1);

p2 = x(2);

q0 = x(3);

q1 = x(4);

q2 = x(5);

r1 = x(6);

% Algebraic equations

g21 = -q0+y3;

g22 = q1-(p1-p2)/Rv1;

g23 = -q2+y2;

% Residual equations

gr1 = p1+r1-y1;

% Dynamics, with feedback

dp1 = (q0-q1)/CT1 + K(1,:)*r1;

dp2 = (q1-q2)/CT2 + K(2,:)*r1;

C.4 ResGen4 40

% Return value

dx = [dp1; dp2; g21; g22; g23; gr1];

end

d index of keywords and methods

keywords

algebraic loops, 19

aminc, see minimal hitting set
analytical redundancy relations, see

ARR
ARR, 15

causality, 20

derivative, see derivative
causality

integral, see integral causality
mixed, see mixed causality

computational sequence, see
matching

conditional constraints, 12

DAE
model, 22

observer, 22

derivative causality, 15, 18

detectability analysis, 15

detectable faults, 15

diagnosability, 15

DiagnosisModel, 4

differential constraint
residual equation, 20

differential constraints, 9, 12

differential index, 11, 22

high, 22

low, 22

structural, 22

dmperm, see Dulmage-Mendelsohn
decomposition

doc, 4

downloading, 5

Dulmage-Mendelsohn
decomposition, 12

dynamic model, 9

dynamics, 6

equivalence class, 13

external functions, 12, 21

fault sensitivity matrix, see FSM
FSM, 15

handle class, 9

if-equations, 12

incidence matrix, 7

installation, 5

integral causality, 15, 18

isolability analysis, 15, 25

diagnosis system, 28

license, 6

lumped dynamics, 6

mass matrix, 23

matching, 19, 27

MatrixStruc, 7

methods, 4

mex, 34

MHS, see minimal hitting set
minimal hitting set, 16

minimal hitting set, 34

approximate, 16

minimal test equation support, see
MTES

minimally structurally
overdetermined, see MSO

mixed causality, 15, 18

model
dynamic, 9

structure, see structural model
symbolic, see symbolic model, 11

model parameters, 11

MSO, 13

MTES, 13, 14

non-detectable faults, 15

observer gain, 23

ODE solver, 23

overdetermined equations, 13, 26

pole placement, 28

PSO
decomposition, 13

rels, 8

residual equation, 19

residual generator, 18

observer, 21, 28

sequential, 18

sensor fault, 17

sensor placement, 16

sensor selection, 16

SeqResGen
batch, 21

C code generation, 21

structural model, 6, 7

symbolic, 11

symbolic model, 6

symbolic models, 11

type, 7, 8

VarStruc, 8

41

methods

AddEquations, 32

AddSensors, 17, 32

AlgebraicVariables, 33

BipartiteToLaTeX, 9, 33

CompiledMHS, 33

CompiledMSO, 34

copy, 9, 32

DetectabilityAnalysis, 15, 33

DiagnosisModel, 4, 7, 9, 32

DiffConstraint, 10, 12

DifferentialConstraints, 32

DynamicVariables, 33

e, 32

F, 32

f, 32

FSM, 15, 28, 33

GenSimulationModel, 32

GetDMParts, 12

IsDynamic, 33

IsHighIndex, 22, 33

IsLowIndex, 33

IsObservable, 33

IsolabilityAnalysis, 15, 25, 33

IsolabilityAnalysisArrs, 15, 33

IsolabilityAnalysisFSM, 15, 28, 33

IsPSO, 33

IsStatic, 33

Lint, 8, 32

LumpDynamics, 32

Matching, 19, 27, 34

MeasurementEquations, 32

MSO, 13, 33

MSOCausalitySweep, 20, 34

MTES, 13, 14, 33

MTESRedundancy, 33

name, 32

ne, 33

nf, 33

nx, 33

nz, 33

ObserverResGen, 22, 28, 34

P, 32

Pantelides, 22, 33

parameters, 32

Pfault, 32

PlotDM, 5, 32

PlotMatching, 34

PlotModel, 8, 10, 32

PossibleSensorLocations, 16, 33

PSODecomposition, 13

RandomForestTestSelection, 16

Redundancy, 33

RemoveFaultVariables, 32

ReplaceEquations, 32

SensorLocationsWithFaults, 17, 33

SensorPlacementDetectability, 17, 33

SensorPlacementIsolability, 17, 33

SeqResGen, 19, 21, 27, 34

srank, 33

Structural, 32

SubModel, 32

syme, 32

TestSelection, 16, 33

type, 32

X, 32

x, 32

Z, 32

z, 32

42

references 43

references
[1] Mogens Blanke, Michel Kinnaert, Jan Lunze, and Marcel Staroswiecki. Diagno-

sis and fault-tolerant control. Springer, 3rd edition, 2016.

[2] K. Brenan, S. Campbell, and L. Petzold. Numerical solution of initial-value prob-
lems in differential-algebraic equations, volume 14. Siam, 1996.

[3] Timothy A Davis. Direct methods for sparse linear systems, volume 2. Siam, 2006.

[4] Andrew L Dulmage and Nathan S Mendelsohn. Coverings of bipartite graphs.
Canadian Journal of Mathematics, 10(4):516–534, 1958.

[5] Dilek Dustegör, Erik Frisk, Vincent Coquempot, Mattias Krysander, and Mar-
cel Staroswiecki. Structural analysis of fault isolability in the DAMADICS
benchmark. Control Engineering Practice, 14(6):597–608, 2006.

[6] Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander, Belarmino Pulido,
and Gautam Biswas. Diagnosability analysis considering causal interpretations
for differential constraints. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 42(5):1216–1229, 2012.

[7] Erik Frisk and Mattias Krysander. Residual selection for consistency based di-
agnosis using machine learning models. In IFAC SafeProcess, Warszaw, Poland,
August 2018.

[8] C William Gear and Linda R Petzold. Ode methods for the solution of dif-
ferential/algebraic systems. SIAM Journal on Numerical Analysis, 21(4):716–728,
1984.

[9] Mattias Krysander, Jan Åslund, and Erik Frisk. A structural algorithm for
finding testable sub-models and multiple fault isolability analysis. 21st Inter-
national Workshop on Principles of Diagnosis (DX-10), Portland, Oregon, USA,
2010.

[10] Mattias Krysander and Erik Frisk. Sensor placement for fault diagnosis. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
38(6):1398–1410, 2008.

[11] Mattias Krysander, Jan Åslund, and Mattias Nyberg. An efficient algorithm
for finding minimal overconstrained subsystems for model-based diagnosis.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
38(1):197–206, 2008.

[12] J. Armengol Llobet, A. Bregon, T. Escobet, E. R. Gelso, M. Krysander, M. Ny-
berg, X. Olive, B. Pulido, and L. Trave-Massuyes. Minimal structurally overde-
termined sets for residual generation: A comparison of alternative approaches.
In Proceedings of IFAC Safeprocess’09, Barcelona, Spain, 2009.

[13] Constantinos C Pantelides. The consistent initialization of differential-algebraic
systems. SIAM Journal on Scientific and Statistical Computing, 9(2):213–231, 1988.

[14] Linda Petzold. Differential/algebraic equations are not ode’s. SIAM Journal on
Scientific and Statistical Computing, 3(3):367–384, 1982.

[15] Albert Rosich, Erik Frisk, Jan Åslund, Ramon Sarrate, and Fatiha Nejjari. Fault
diagnosis based on causal computations. IEEE Transactions on Systems, Man,
and Cybernetics – Part A: Systems and Humans, 42(2):371–381, 2012.

[16] Carl Svärd and Mattias Nyberg. Residual generators for fault diagnosis using
computation sequences with mixed causality applied to automotive systems.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
40(6):1310–1328, 2010.

references 44

[17] Carl Svärd, Mattias Nyberg, and Erik Frisk. Realizability constrained selection
of residual generators for fault diagnosis with an automotive engine applica-
tion. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6):1354–
1369, 2013.

[18] Carl Svärd, Mattias Nyberg, Erik Frisk, and Mattias Krysander. Automotive en-
gine FDI by application of an automated model-based and data-driven design
methodology. Control Engineering Practice, 21(4):455–472, 2013.

	1 Introduction and overview
	1.1 Reference literature
	1.2 Downloading and installation
	1.3 Terms of usage

	2 Defining models
	2.1 Defining a structural model
	2.1.1 Defining the model using incidence matrices
	2.1.2 Defining the model using variable names
	2.1.3 Defining dynamic models

	2.2 Defining symbolic models
	2.2.1 Conditional constraints
	2.2.2 Using external functions

	3 Dulmage-Mendelsohn decomposition
	4 Analysis of overdetermined equations
	5 Diagnosability analysis
	6 Test Selection
	6.1 A minimal hitting set approach
	6.2 Random Forest based Approach

	7 Sensor placement analysis
	8 Residual generator design
	8.1 Sequential residual generator design
	8.2 Generating and compiling generated C code
	8.3 Observer based residual generator design

	9 Use case
	9.1 Model definition
	9.2 Isolability analysis
	9.3 Find overdetermined set of equations
	9.4 Design residual generators
	9.5 Isolability properties of residual generators
	9.6 Simulation results

	A Summary of class methods
	B Compile C++ implementations
	B.1 Minimal Hitting Set
	B.2 MSO algorithm

	C Generated code in use-case
	C.1 ResGen1
	C.2 ResGen2
	C.3 ResGen3
	C.4 ResGen4

	D Index of keywords and methods

