
Structural methods for analysis and design of
large-scale diagnosis systems

Erik Frisk and Mattias Krysander
{erik.frisk,mattias.krysander}@liu.se

Dept. Electrical Engineering
Vehicular Systems

Linköping University
Sweden

July 8, 2017

1 / 226

Who are we?

Erik Frisk
erik.frisk@liu.se

Mattias Krysander
mattias.krysander@liu.se

Department of Electrical Engineering
Linköping University

Sweden

2 / 226

Introduction

3 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

4 / 226

erik.frisk@liu.se
mattias.krysander@liu.se

Supervision of an automotive engine

5 / 226

Secondary Environmental Cooling System in Gripen

Model in Modelica

Uses standard component libraries

1,000-10,000 equations

6 / 226

Analysis and design of large-scale diagnosis systems

Definition (Large scale)

Systems and models that can not be managed by hand; that need
computational support.
We do not mean: distributed diagnosis, big data, machine learning,
classifiers, and other exciting fields

Scope of tutorial

Describe techniques suitable for large scale, non-linear, models based
on structural analysis

Support different stages of diagnosis systems design

Provide a theoretical foundation

7 / 226

The basic idea

System

Model

ẋ = g(x, u)

y = h(x, u)

+

faults f(t)

actuators u(t)

observation y(t)

prediction ŷ(t)

residual r(t)

�

0 5 10 15 20 25 30 35 40 45
−1

−0.5

0

0.5

Real applications not that simple

Models are complex, non-linear, includes lookup-tables, . . .

Fault isolation, not only fault detection

Models are uncertain, which, by definition is not modeled; merging
models with data?

8 / 226

Methods for fault diagnosis

ẋ = Ax + Bu ẋ = g(x , u)

y = Cx y = h(x)

There are many published techniques, elegant and powerful, to address
fault diagnosis problems based on, e.g., state-space models like above.

They might involve, more or less, involved mathematics and formula
manipulation.

This tutorial

This tutorial covers techniques that are suitable for large systems where
involved hand-manipulation of equations is not an option

9 / 226

Main parts of the tutorial

Outline

1 Formally introduce structural models and fundamental diagnosis
definitions

2 Derive algorithms for design of residual generators

Introduction of fundamental graph-theoretical tools, e.g.,
Dulmage-Mendelsohn decomposition of bi-partite graphs
Finding all minimal submodels with redundancy
Generating residuals based on submodels with redundancy

3 Derive algorithms for analysis of models and diagnosis systems

Determination of fault isolability properties of a model
Determination of fault isolability properties of a diagnosis system
Finding sensor locations for fault diagnosis

10 / 226

Objectives

Understand fundamental methods in structural analysis for fault
diagnosis

Understand possibilities and limitations of the techniques

Introduce sample computational tools

Tutorial not intended as a course in the fundamentals of structural
analysis, our objective has been to make the presentation accessible
even without a background in structural analysis

Does not include all approaches for structural analysis in fault
diagnosis, e.g., bond graphs and directed graph representations are
not covered.

11 / 226

Software

Fault Diagnosis Toolbox for Matlab

Some key features

Structural analysis of large-scale DAE models

Analysis

Find submodels with redundancy (MSO/MTES)
Diagnosability analysis of models and diagnosis systems
Sensor placement analysis

Code generation for residual generators

based on matchings (ARRs)
based on observers

12 / 226

faultdiagnosistoolbox.github.io

13 / 226

Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators

x = g(u) r1 = y1 − g(u)

y1 = x r2 = y2 − g(u)

y2 = x r3 = y2 − y1

y3 = x r4 = y3 − g(u)

r5 = y3 − y1

r6 = y3 − y2

Number of possibilities grows exponentially (here
(n
2

)
minimal

combinations)

Not just y − ŷ

Is this illustration relevant for more general cases?

14 / 226

Example: Ideal electric motor model

V

R L

+
−

+

−
Kaω

i

Tm Tl

Tm − Tl = T

e1 : V = iR(1 + fR) + L
di

dt
+ Kaiω e4 : T = Tm − Tl e7 : yi = i + fi

e2 : Tm = Kai
2 e5 :

dθ

dt
= ω e8 : yω = ω + fω

e3 : J
dω

dt
= T − bω e6 :

dω

dt
= α e9 : yT = T + fT

Model summary (9 equations)

Known variables(4): V , yi , yω, yT
Unknown variables(7): i , θ, ω, α, T , Tm, Tl , (i , ω, θ dynamic)
Fault variables(4): fR , fi , fω, fT

15 / 226

Structural model

Structural model

A structural model only models that variables are related!

Example relating variables: V , i , ω

e1 : V = iR(1 + fR) + L
di

dt
+ Kai ω

Unknown variables
i θ ω α T Tm Tl fR fi fω fT V yi yω yT

e1 X X X X

Coarse model description, no parameters or analytical expressions

Can be obtained early in design process with little engineering effort

Large-scale model analysis possible using graph theoretical tools

Very useful!

Main drawback: Only best case results!

16 / 226

faultdiagnosistoolbox.github.io

Structural model of the electric motor

e1

e2

e3

e4

e5

e6

e7

e8

e9

I w th

al
ph

a T

T
m T

l

fR fi fw fT V yi yw yT

Electric motor

What can you do with this simple
piece of information?

Known variables(4): V , yi , yω, yT
Unknown variables(7): i , θ, ω, α, T , Tm, Tl , (i , ω, θ dynamic)
Fault variables(4): fR , fi , fω, fT 17 / 226

Structural isolability analysis of model

fR fi fw fT

fR

fi

fw

fT

Isolability Matrix

Variables
th alpha Tl Tm I T w

E
qu

at
io

ns

e5

e6

e4

e2

e1

e7

e3

e9

e8

fR

fi

fw

fT

Nontrivial result

fR and fi can not be isolated from each other, unique isolation of fω and fT

18 / 226

Sensor placement - which sensors to add?

Q: Which sensors should we add to achieve full isolability?

Choose among {i , θ, ω, α,T ,Tm,Tl}. Minimal sets of sensors that
achieves full isolability are

S1 = {i}
S2 = {Tm}
S3 = {Tl}

Let us add S1, a second sensor measuring i (one current sensor already
used),

yi ,2 = i

19 / 226

Create residuals to detect and isolate faults

Q: Which equations can be used to create residuals?

e1 : V = iR(1 + fR) + L
di

dt
+ Kaiω e4 : T = Tm − Tl e7 : yi = i + fi

e2 : Tm = Kai
2 e5 :

dθ

dt
= ω e8 : yω = ω + fω

e3 : J
dω

dt
= T − bω e6 :

dω

dt
= α e9 : yT = T + fT

e10 : yi ,2 = i

Example, equations {e3, e8, e9} = {Jω̇ = T − bω, yω = ω, yT = T} has
redundancy! 3 equations, 2 unknown variables (ω and T)

r = Jẏω + byω − yT
Structural redundancy

Determine redundancy by counting equations and unknown variables!

20 / 226

Create residuals to detect and isolate faults

Q: Which equations can be used to create residuals?

Analysis shows that there are 6 minimal sets of equations with redundancy,
called MSO sets. Three are

M1 = {yi = i , yi ,2 = i} ⇒ r1 = yi − yi ,2

M2 = {yω = ω, yT = T , Jω̇ = T − bω} ⇒ r2 = yT − Jẏω − bω

M3 = {V = L
d

dt
i + i R + Kaiω, ⇒ r3 = V − Lẏi + yi R + Kayiyω

yω = ω, yi = i}
M4 = . . .

M5 = . . .

M6 = . . .

21 / 226

Fault signature matrix and isolability for MSOs

Q: Which isolability is given by the 6 MSOs/candidate residual generators?

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix

⇒

fR fi fw fT

fR

fi

fw

fT

Isolability matrix for set of ARRs in 'Electric motor'

If I could design 6 residuals based on the MSOs ⇒ full isolability

22 / 226

Test selection

Q: Do we need all 6 residuals? No, only 4

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix

⇒

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix, selected tests

23 / 226

Code generation supported by structural analysis

Q: Can we automatically generate code for residual generator?

For example, MSO M2

{yω = ω, yT = T , Jω̇ = T − bω}

has redundancy and it is possible to
generate code for residual
generator, equivalent to

r2 = Jẏω + byω − yT

Automatic generation of code

% Initialize state variables

w = state.w;

% Residual generator body

T = yT; % e9

w = yw; % e8

dw = ApproxDiff(w,state.w,Ts); % e11

r2 = J*dw+bw-T; % e3

24 / 226

Design process aided by structural analysis

Modeling	
 Diagnosability	

Analysis	

Sensor	

Selec4on	

Residual	

Generator	

Analysis	

Test	
 Selec4on	
 Code	

Genera4on	

All these topics will be covered in the tutorial

Presentation biased to our own work

25 / 226

Some history

50’s In mathematics, graph theory. A. Dulmage and
N. Mendelsohn, “Covering of bi-partite graphs”

60’s-70’s Structure analysis and decomposition of large systems,
e.g., C.T. Lin, “Structural controllability” (AC-1974)

90’s- Structural analysis for fault diagnosis, first introduced by
M. Staroswiecki and P. Declerck. After that, thriving
research area in AI and Automatic Control research
communities.

26 / 226

Differential index

Definition

From simulation of differential-algebraic equations (there is a formal
definition): “how far from an ODE is a set of equations”?

Index 0: all variables are dynamic

ẋ = g(x)

Index 1: dynamic variables (x1) and algebraic variables (x2)

ẋ1 = g1(x1, x2)

0 = g2(x1, x2), ∂g2/∂x2 full rank

Index > 1: dynamic variables (x1) and algebraic variables (x2)

ẋ1 = g1(x1, x2)

0 = g2(x1)

27 / 226

Differential index and diagnosis

Why is this relevant here? models are often state-space/Simulink models!

ẋ = g(x , u)

y = h(x , u)

ARRs, Possible conflicts, MSO sets, . . . : submodels!

ẋ1 = g(x1, x2, u)

y1 = h1(x1, x2, u)

Appears naturally in a diagnosis context!

I will return to this topic briefly in diagnosability analysis and residual
generation but do not have the time to get detailed.

28 / 226

Differential index and diagnosis

Take home message

Low index problems (0/1):

Easy to simulate (basic simulink models are always low-index)
State-space techniques directly applicable, e.g., state-observers

High-index problems (> 1):

Hard to simulate accurately, difficult to diagnose (often very)
Corresponds to differentiating, numerically, signals
Observer techniques not directly applicable

29 / 226

Decision Making

30 / 226

Decision making under noise

-3 -2 -1 0 1 2 3 4 5

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Thresholds often set based on (a small) false alarm probability

Residual over threshold ⇒ fault with good confidence

Residual under threshold ⇒ ?

31 / 226

r1: MSO 1650 (*)

2 4 6 8 10 12
-2

0

2

4
r2: MSO 4012 (*)

2 4 6 8 10 12
-2

0

2

4
r3: MSO 4017 (*)

2 4 6 8 10 12
-1

0

1

2 4 6 8 10 12
-1

0

1
r4: MSO 4018 r5: MSO 4067 (*)

2 4 6 8 10 12

t [min]

-5

0

5

10

2 4 6 8 10 12

t [min]

-1

0

1
r6: MSO 4075

2 4 6 8 10 12

t [min]

-1

0

1
r7: MSO 4478

Residuals, dataset: fyw_af

fyw_af fyp_im fyp_ic fyT_ic

MSO 1650

MSO 4012

MSO 4017

MSO 4018

MSO 4067

MSO 4075

MSO 4478

Fault Signature Matrix

fyw_af fyp_im fyp_ic fyT_ic

fyw_af

fyp_im

fyp_ic

fyT_ic

Fault isolability of 7 selected MSO sets

32 / 226

A word on fault isolation and exoneration

f1 f2 f3 f4
M1 0 0 1 1
M2 1 0 1 0
M3 1 1 0 1

⇒

f1 f2 f3 f4
f1 1 0 0 0
f2 1 1 0 1
f3 0 0 1 0
f4 0 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are
different?
A: We do not assume exoneration (= ideal residual response), exoneration
is a term from consistency based diagnosis, here isolation by column
matching

CBD diagnosis

r1 > J ⇒ f3 or f4

r2 > J ⇒ f1 or f3

⇒
Minimal consistency based diagnoses with
no exoneration assumption:
D1 = {f3}, D2 = {f1, f4}

33 / 226

Fault isolation and exoneration

Fault f3 occurs at t = 2 sec.
f1 f2 f3 f4

M1 0 0 1 1
M2 1 0 1 0
M3 1 1 0 1

t [s]
0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r1
r2

Diagnosis result

No exoneration assumption

0− 2.5 : No fault

2.5− 6 : f3 or f4

6− : f3

With exoneration assumption

0− 2.5 : No fault

2.5− 6 : Unknown

6− : f3

34 / 226

Consistency based fault isolation or column matching

Column matching common in FDI litterature

bad diagnoses in case of missed detections
need to care about order and timing of alarms
inhibation of monitors/residual generators

With a consistency based approach

none of the above
strong theoretical background in AI

A starting point

Cordier, M-O., et al. ”Conflicts versus analytical redundancy relations: a
comparative analysis of the model based diagnosis approach from the
artificial intelligence and automatic control perspectives” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
34.5 (2004): 2163-2177.

35 / 226

Basic definitions

36 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

37 / 226

A structural model - the nominal model

V

R L

+
−

+

−
Kaω

i

Tm Tl

Tm − Tl = T

e1 : V = iR + L
di

dt
+ Kaiω

e2 : Tm = Kai
2

e3 : J
dω

dt
= T − bω

e4 : T = Tm − Tl

e5 : yi = i

e6 : yω = ω

e7 : yT = T

Variables types:

Unknown variables:
i , ω, T , Tm, Tl

Known variables: sensor
values, known input signals:
V , yi , yω, yT

Known parameter values:
R, L, Ka, J, b

Common mistakes:

Consider i as a known
variable since it is measured.

Consider a variable that can
be estimated using the
model, i.e., Tm, to be a
known variable.

38 / 226

A structural model - the nominal model

e1 : V = iR + L
di

dt
+ Kaiω

e2 : Tm = Kai
2

e3 : J
dω

dt
= T − bω

e4 : T = Tm − Tl

e5 : yi = i

e6 : yω = ω

e7 : yT = T

Biadjacency matrix:
i ω T Tm Tl

e7

e6

e5

e4

e3

e2

e1

39 / 226

A structural model with fault information

Fault influence can be included in the model

by fault signals

by equation assumptions/supports

e1 : V = i(R + fR) + L
di

dt
+ Kaiω

e2 : Tm = Kai
2

e3 : J
dω

dt
= T − (b + fb)ω

e4 : T = Tm − Tl

e5 : yi = i + fi

e6 : yω = ω + fω

e7 : yT = T + fT

i ω T Tm Tl

e7

e6

e5

e4

e3

e2

e1fR

fb

fi

fω

fT

40 / 226

Structural representation of dynamic systems
Structural representation of dynamic systems can be done as follows:

1 Consider x and ẋ to be structurally the same variable.

2 Consider x and ẋ to be separate variables.

dx1
dt

= g1(x1, x2, z , f) x ′1 = g1(x1, x2, z , f)

0 = g2(x1, x2, z , f) ⇒ 0 = g2(x1, x2, z , f)

dx1
dt

= x ′1

In this case dynamics is usually separated from the algebraic part by
introducing a variable representing the derivatives

x ′ =
dx

dt

Choice depend on purpose and objective.

41 / 226

Dynamics - not distinguish derivatives

e1 : V = iR + L
di

dt
+ Kaiω

e2 : Tm = Kai
2

e3 : J
dω

dt
= T − bω

e4 : T = Tm − Tl

e5 : yi = i

e6 : yω = ω

e7 : yT = T

i ω T Tm Tl

e7

e6

e5

e4

e3

e2

e1

Compact description

42 / 226

Dynamics - distinguish derivatives

e1 : V = iR + Li ′ + Kaiω

e2 : Tm = Kai
2

e3 : Jω′ = T − bω

e4 : T = Tm − Tl

e5 : yi = i

e6 : yω = ω

e7 : yT = T

d1 : i ′ =
di

dt

d2 : ω′ =
dω

dt

i ω T Tm Tl i′ ω′

I D

I Dd2

d1

e7

e6

e5

e4

e3

e2

e1

Add differential constraints
Used for computing sequential residual generators
Differential/integral causality and index properties 43 / 226

Structural properties interesting for diagnosis

Properties interesting both for residual generation, fault detectability and
isolability analysis.

Let M = {e1, e2, . . . , en} be a set of equations.

Basic questions answered by structural analysis

1 Can a residual generator be derived from M ?
or equivalently can the consistency of M be checked?

2 Which faults are expected to influence the residual?

Structural results give generic answers. We will come back to this later.

44 / 226

Testable equation set?

Is it possible to compute a residual from these equations?

e3 : T = J
dω

dt
+ bω

e5 : i = yi

e6 : ω = yω

e1 : V − iR − L
di

dt
− Kaiω = 0

T i ω

e3 X X
e5 X
e6 X
e1 X X

Yes! The values of ω, i , and T can be computed using equations e6,
e5, and e3 respectively. Then there is an additional equation e1 a
so-called redundant equation that can be used for residual generation

V − yiR + L
dyi
dt
− Kayiyω = 0

Compute the residual

r = V − yiR + L
dyi
dt
− Kayiyω

and compare if it is close to 0. 45 / 226

Fault sensitivity of the residual?

Model with fault:

e3 : T = J
dω

dt
+ (b + fb)ω

e5 : i = yi − fi

e6 : ω = yω − fω

e1 : V − i(R + fR)− L
di

dt
− Kaiω = 0

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR

Which faults could case the residual to be non-zero?

r = V − yiR + L
dyi
dt
− Kayiyω =

= yi fR + fi (Kafω − R − yw − fR)− L
dfi
dt
− Kayi fω

Sensitive to all faults except fb.

Not surprising since e3 was not used in the derivation of the residual!

46 / 226

Structural analysis provides the same information

Model with fault:

e3 : T = J
dω

dt
+ (b + fb)ω

e5 : i = yi − fi

e6 : ω = yω − fω

e1 : V − i(R + fR)− L
di

dt
− Kaiω = 0

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR

Structural analysis provides the following useful diagnosis information:

residual from {e1, e5, e6}
sensitive to {fi , fω, fR}

Let’s formalize the structural reasoning!

47 / 226

Matching

A matching in a bipartite graph is a pairing of nodes in the two sets.

Formally: set of edges with no common nodes.

A matching with maximum cardinality is a maximal matching.

Diagnosis related interpretation: which variable is computed from
which equation

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR

e3

e5

e6

e1

T

i

ω

yi

yω

e6

ω

i

r

e5

e1

e3

T

48 / 226

Dulmage-Mendelsohn decomposition

b0

b1

b2

. . .

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M−

M0

M+

M+ is the overdetermined part of model M.

M0 is the exactly determined part of model M.

M− is the underdetermined part of model M.

Matlab command: dmperm

49 / 226

Dulmage-Mendelsohn Decomposition

1 Find a maximal matching

2 Rearrange rows and columns

3 Identify the under-, just-, and over-determined parts by backtracking

4 Identify the block decomposition of the just-determined part. Erik will
explain later.

5 Dulmage-Mendelsohn decomposition can be done very fast for large
models.

50 / 226

Detectable faults

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR

M+ = {e1, e5, e6}
X+ = {i , ω}
Faults in M+: {fi , fω, fR}

Tl Tm i T ω

e6

e7

e3

e5

e1

e2

e4

fR

fb

fi

fω

fT

M+ = {e1, e3, e5, e6, e7}
X+ = {i ,T , ω}
Faults in M+: {fR , fi , fb, fT , fω}

The overdetermined part contains all redundancy.

Structurally detectable fault

Fault f is structurally detectable in M if f enters in M+

51 / 226

Basic definitions - degree of redundancy

Degree of redundancy

Let M be a set of equations in the unknowns X , then

ϕ(M) = |M+| − |X+|

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR

M+ = {e1, e5, e6}
X+ = {i , ω}
ϕ(M) = 3− 2 = 1

Tl Tm i T ω

e6

e7

e3

e5

e1

e2

e4

fR

fb

fi

fω

fT

M+ = {e1, e3, e5, e6, e7}
X+ = {i ,T , ω}
ϕ(M) = 5− 3 = 2

52 / 226

Basic definitions - overdetermined equation sets

Structurally Overdetermined (SO)

M is SO if ϕ(M) > 0

Minimally Structurally Overdetermined (MSO)

An SO set M is an MSO if no proper subset of M is SO.

Proper Structurally Overdetermined (PSO)

An SO set M is PSO if ϕ(E) < ϕ(M) for all proper subsets E ⊂ M

53 / 226

Examples - electrical motor
Relation between overdetermined part and SO, MSO, and PSO sets.

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR

M = {e1, e3, e5, e6} is SO since

ϕ(M) = |M+| − |X+| = 3− 2 = 1 > 0

A residual can be computed but it is not sensitive to all faults in M.

M+ = {e1, e5, e6} is SO but also

PSO since the redundancy decreases if any equation is removed
MSO since there is no SO subset.

MSO and PSO sets seem to be interesting!

54 / 226

Example - sensor redundancy

e1 : y1 = x

e2 : y2 = x

e3 : y3 = x

{e1, e2} : r1 = y1 − y2

{e1, e3} : r2 = y1 − y3

{e2, e3} : r3 = y2 − y3

{e1, e2, e3} : r4 = r21 + r22

{e1, e2, e3} is Structurally Overdetermined (SO) but not MSO since

{e1, e2}, {e1, e3}, {e2, e3} all are MSO:s

All above equation sets are PSO since degree of redundancy decreases
if an element is removed.

Properties

M PSO set ⇔ residual from M sensitive to all faults in M

MSO sets are PSO sets with structural redundancy 1.

MSO sets are sensitive to few faults, which is good for fault isolation.
⇒ MSO sets are candidates for residual generation

55 / 226

Examples - electrical motor, MSO sets and tests

e1 : V = iR + L
di

dt
+ Kaiω

e2 : Tm = Kai
2

e3 : J
dω

dt
= T − bω

e4 : T = Tm − Tl

e5 : yi = i

e6 : yω = ω

e7 : yT = T

MSO sets and possible tests:

e6 : ω̂ = yω

e1 :
dî

dt
=

1

L
(V − îR − Ka î ω̂)

e5 : r1 = yi − î

e7 : T̂ = yT

e3 :
d ω̂

dt
=

1

J
(T̂ − bω̂)

e6 : r2 = yω − ω̂

e7 : T̂ = yT

e3 :
d ω̂

dt
=

1

J
(T̂ − bω̂)

e1 :
dî

dt
=

1

L
(V − îR − Ka î ω̂)

e5 : r3 = yi − î

fR fb fi fω fT
r1 X X X
r2 X X X
r3 X X X X

56 / 226

Conclusions so far

Structural properties:

Properties

M PSO set ⇔ residual from M sensitive to all faults in M

MSO sets are PSO sets with structural redundancy 1.

MSO sets are sensitive to few faults which is good for fault isolation.
⇒ MSO sets are candidates for residual generation

MSO and PSO models characterize model redundancy, but faults are not
taken into account.

Next we will take faults into account.

57 / 226

Example: A state-space model

To illustrate the ideas I will consider the following small state-space model
with 3 states, 3 measurements, and 5 faults:

e1 : ẋ1 = −x1 + u + f1
e2 : ẋ2 = x1 − 2x2 + x3 + f2
e3 : ẋ3 = x2 − 3x3
e4 : y1 = x2 + f3
e5 : y2 = x2 + f4
e6 : y3 = x3 + f5

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

xi represent the unknown variables, u and yi the known variables, and fi
the faults to be monitored.

58 / 226

MSO sets

There are 8 MSO sets in the model

Equations Faults

MSO1 {e3, e5, e6} {f4, f5}
MSO2 {e3, e4, e6} {f3, f5}
MSO3 {e4, e5} {f3, f4}
MSO4 {e1, e2, e3, e6} {f1, f2, f5}
MSO5 {e1, e2, e3, e5} {f1, f2, f4}
MSO6 {e1, e2, e3, e4} {f1, f2, f3}
MSO7 {e1, e2, e5, e6} {f1, f2, f4, f5}
MSO8 {e1, e2, e4, e6} {f1, f2, f3, f5}

In the definitions of redundancy, SO, MSO, and PSO we only considered
equations and unknown variables.

But who cares about equations?

We are mainly interested in faults!

59 / 226

First observation: All MSO sets are not equally ”good”
Tests sensitive to few faults give more precise isolation.

Equations Faults

MSO1 {e3, e5, e6} {f4, f5}
MSO2 {e3, e4, e6} {f3, f5}
MSO3 {e4, e5} {f3, f4}
MSO4 {e1, e2, e3, e6} {f1, f2, f5}
MSO5 {e1, e2, e3, e5} {f1, f2, f4}
MSO6 {e1, e2, e3, e4} {f1, f2, f3}
MSO7 {e1, e2, e5, e6} {f1, f2, f4, f5}
MSO8 {e1, e2, e4, e6} {f1, f2, f3, f5}

Faults(MSO1),Faults(MSO4),Faults(MSO5) ⊂ Faults(MSO7)

Faults(MSO2),Faults(MSO4),Faults(MSO6) ⊂ Faults(MSO8)

Conclusion 1

MSO7 and MSO8 are not minimal with respect to fault sensitivity

60 / 226

Second observation: Sometimes there are better test sets

A residual generator based on the equations in MSO7 will be sensitive to
the faults:

Faults({e1, e2, e5, e6}) = {f1, f2, f4, f5}

Adding equation e3 does not change the fault sensitivity:

Faults({e1, e2, e3, e5, e6}︸ ︷︷ ︸
PSO set with redundancy 2

) = {f1, f2, f4, f5}

Conclusion 2

There exists a PSO set larger than MSO7 with the same fault sensitivity.

61 / 226

Third observation: There are too many MSO sets

Consider the following model of a Scania truck engine
Original model:

532 equations

8 states

528 unknowns

4 redundant eq.

3 actuator faults

4 sensor faults

There are 1436 MSO sets in this model.

Conclusion 3

There are too many MSO sets to handle in practice and we have to find a
way to sort out which sets to use for residual generator design.

62 / 226

Questions

Equations Faults

MSO1 {e3, e5, e6} {f4, f5}
MSO2 {e3, e4, e6} {f3, f5}
MSO3 {e4, e5} {f3, f4}
MSO4 {e1, e2, e3, e6} {f1, f2, f5}
MSO5 {e1, e2, e3, e5} {f1, f2, f4}
MSO6 {e1, e2, e3, e4} {f1, f2, f3}
MSO7 {e1, e2, e5, e6} {f1, f2, f4, f5}
MSO8 {e1, e2, e4, e6} {f1, f2, f3, f5}

What distinguish the first 6 MSO sets?

63 / 226

Questions

Equations Faults

MSO1 {e3, e5, e6} {f4, f5}
MSO2 {e3, e4, e6} {f3, f5}
MSO3 {e4, e5} {f3, f4}
MSO4 {e1, e2, e3, e6} {f1, f2, f5}
MSO5 {e1, e2, e3, e5} {f1, f2, f4}
MSO6 {e1, e2, e3, e4} {f1, f2, f3}
MSO7 {e1, e2, e5, e6} {f1, f2, f4, f5}
MSO8 {e1, e2, e4, e6} {f1, f2, f3, f5}

Is it always MSO sets we are looking for?

64 / 226

Fundamental questions

Which fault sensitivities are possible?

For a given possible fault sensitivity, which sub-model is the best to
use?

65 / 226

Answers
Let F (M) denote the set of faults included in M.

Definition (Test Support)

Given a model M and a set of faults F , a non-empty subset of faults
ζ ⊆ F is a test support if there exists a PSO set M ⊆M such that
F (M) = ζ.

Definition (Test Equation Support)

An equation set M is a Test Equation Support (TES) if

1 M is a PSO set,

2 F (M) 6= ∅, and

3 for any M ′) M where M ′ is a PSO set it holds that F (M ′)) F (M).

MSO7 is not a TES since

Faults({e1, e2, e5, e6}) = Faults({e1, e2, e3, e5, e6}) = {f1, f2, f4, f5}
66 / 226

Answers

Definition (Minimal Test Support)

Given a model, a test support is a minimal test support (MTS) if no
proper subset is a test support.

Definition (Minimal Test Equation Support)

A TES M is a minimal TES (MTES) if there exists no subset of M that is
a TES.

67 / 226

Example

Equations Faults

MSO1 {e3, e5, e6} {f4, f5}
MSO2 {e3, e4, e6} {f3, f5}
MSO3 {e4, e5} {f3, f4}
MSO4 {e1, e2, e3, e6} {f1, f2, f5}
MSO5 {e1, e2, e3, e5} {f1, f2, f4}
MSO6 {e1, e2, e3, e4} {f1, f2, f3}
MSO7 {e1, e2, e5, e6} {f1, f2, f4, f5}
MSO8 {e1, e2, e4, e6} {f1, f2, f3, f5}

The MTES:s are the first 6 MSO sets. (fewer MTESs than MSOs)

The 2 last not even a TES.

The TES corresponding to last TS:s are {e1, e2, e3, e5, e6},
{e1, e2, e3, e4, e6}

68 / 226

Example - electrical motor

Tl Tm i T ω

e6

e7

e3

e5

e1

e2

e4

fR

fb

fi

fω

fT

All equations in the overdeter-
mined part contain faults so the
MTES:s are the same as the MSO
sets.

fR fb fi fω fT
r1 X X X
r2 X X X
r3 X X X X

If sensor yω could not fail, then
MSO 3 will not be an MTES.

69 / 226

Summary

Consider a model M with faults F .

TS/TES

ζ ⊆ F is a TS ⇔ there is a residual sensitive to the faults in ζ

The TES corresponding to ζ can easliy be computed as

(M \ eq(F \ ζ))+

MTES are

typically MSO sets.

fewer than MSO sets.

sensitive to minimal sets of faults.

sufficient and necessary for maximum multiple fault isolability

⇒ candidates for deriving residuals

70 / 226

Diagnosis Systems Design

71 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

72 / 226

Design system design supported by structural methods

Modeling	
 Diagnosability	

Analysis	

Sensor	

Selec4on	

Residual	

Generator	

Analysis	

Test	
 Selec4on	
 Code	

Genera4on	

73 / 226

A basic idea

Model

Sub-model  
With  
Redundancy

Residual  
Generator

74 / 226

Diagnosis system design
A successful approach to diagnosis is to design a set of residual generators
with different fault sensitivities.

Designing diagnosis system utilizing structural analysis

1 Find (all) testable models (MSO/MTES/...)
2 Select a subset of testable models based on for example

required fault isolability
differential index properties

3 From each selected testable model generate code for the
corresponding residual.

4 Run residuals on measurement data and evaluate performance taking
noise and model uncertainties into account.

Algorithms covered here

Basic MSO algorithm

Improved MSO algorithm

MTES algorithm
75 / 226

Number of ARR/MSO

Number of ARRs/MSO and number of measurements

Number of ARRs/MSO is typically much greater than the number of
measurements
Typically

Number of measurements = degree of redundancy

Number of ARRs/MSO sets – exponential in degree of redundancy

Common misunderstanding!

Redundancy 4

4 output sensors

Set minimal submodels with
redundancy ≈ 4500

Many solutions available, choose
wisely

76 / 226

Dulmage-Mendelsohn decomposition
A cornerstone in the MSO-algorithm is the Dulmage-Mendelsohn
decomposition.

b0

b1

b2

. . .

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M−

M0

M+

In this algorithm we will only use it to find the overdetermined part
M+ of model M because
All MSO sets are contained in the overdetermined part.

77 / 226

Finding MSO sets

MSO sets are found by alternately removing equations and computing
the overdetermined part.

x1 x2 x3 x4

(1) X X
(2) X X
(3) X X X
(4) X
(5) X
(6) X X

Properties of an MSO:

A structurally overdetermined part is an MSO set if and only if

equations = # unknowns +1

The degree of redundancy decreases with one for each removal.

78 / 226

Basic algorithm

Try all combinations

x1 x2 x3 x4

(1) X X
(2) X X
(3) X X X
(4) X
(5) X X
(6) X
(7) X

Remove (1)

Get overdetermined part

Remove (4)
Get overdetermined part

⇒ (6)(7) MSO!

Remove (5)
Get overdetermined part

⇒ (6)(7) MSO!

Remove (6) . . .

Remove (2) . . .

79 / 226

Basic algorithm

The basic algorithm is very easy to implement.
In pseudo-code (feed with M+):

1 function MMSO = FindMSO(M)
2 if ϕ(M)=1
3 MMSO := {M}
4 else
5 MMSO := ∅
6 for each e ∈ M
7 M ′ = (M \ {e})+
8 MMSO := MMSO∪ FindMSO(M ′)
9 end

10 end

80 / 226

The same MSO set is found several times

Example: Removing (1) and then (4) resulted in the MSO (6)(7).

x1 x2 x3 x4

(1) X X
(2) X X
(3) X X X
(4) X
(5) X X
(6) X
(7) X

Remove (4)

Remove (1)

(6)(7) MSO!

If the order of removal is permuted, the same MSO set is obtained.

⇒ Permutations of the order of removal will be prevented.

81 / 226

The same MSO set is found several times

Removal of different equations will sometimes result in the same
overdetermined part.

x1 x2 x3 x4

(1) X X
(2) X X
(3) X X X
(4) X
(5) X X
(6) X
(7) X

Exploit this by defining equivalence classes on the set of equations

82 / 226

Equivalence classes

Let M be the model consisting of a set of equations. Equation ei is related
to equation ej if

ei 6∈ (M \ {ej})+

It can easily be proven that this is an equivalence relation. Thus, [e]
denotes the set of equations that is not in the overdetermined part when
equation e is removed.

Equivalence classes

The same overdetermined part will be obtained independent on which
equation in an equivalence class that is removed.

83 / 226

Unique decomposition of an overdetermined part

x1 x2 x3 x4

(1) X X
(2) X X
(3) X X X
(4) X
(5) X X
(6) X
(7) X

M1 = {(1)(2)(3)}
M2 = {(4)(5)}
M3 = {(6)}
M4 = {(7)}

X1 = {x1, x2}
X2 = {x3}
X3 = ∅
X4 = ∅
X0 = {x4}

|Mi | = |Xi |+ 1
All MSO sets can be written as a union of equivalence classes, e.g.

{(6)(7)} = M3 ∪M4

{(4)(5)(6)} = M2 ∪M3

84 / 226

Equivalence classes
Any PSO set can be written on the canonical form

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����������������

��
��
��

��
��
��

X1X2 · · ·Xn X0

M1

M2

...
...

...

Mn
Mn+1

Mm

+1

+1

+1

. . .

This form will be useful for

1 improving the basic algorithm (now)

2 performing diagnosability analysis (later)

Can be obtained easily with attractive complexity properties
85 / 226

Lumping

The equivalence classes can be lumped together forming a reduced
structure.

Original structure:
x1 x2 x3 x4

(1) X X
(2) X X
(3) X X X

(4) X
(5) X X

(6) X

(7) X

Lumped structure:

x4
M1 ={(1)(2)(3)} X
M2 ={(4)(5)} X
M3 ={(6)} X
M4 ={(7)} X

There is a one to one correspondence between MSO sets in the
original and in the lumped structure.

The lumped structure can be used to find all MSO sets.

86 / 226

Improved algorithm

The same principle as the basic algorithm.

Avoids that the same set is found more than once.
1 Prohibits permutations of the order of removal.
2 Reduces the structure by lumping.

87 / 226

Lets consider this example again

e1 : ẋ1 = −x1 + u + f1
e2 : ẋ2 = x1 − 2x2 + x3 + f2
e3 : ẋ3 = x2 − 3x3
e4 : y1 = x2 + f3
e5 : y2 = x2 + f4
e6 : y3 = x3 + f5

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

xi represent the unknown variables, u and yi the known variables, and fi
the faults to be monitored.

88 / 226

MSO algorithm: We start with the complete model

{e1, e2, e3, e4, e5, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

89 / 226

MSO algorithm: Remove e1 and compute (M \ {e1})+

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

90 / 226

MSO algorithm: Remove e3

{e4, e5}

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

91 / 226

MSO algorithm: Go back and remove e4

{e4, e5}

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6}

{e3, e5, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

92 / 226

MSO algorithm: Go back and remove e5

{e4, e5}

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6}

{e3, e5, e6} {e3, e4, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

93 / 226

MSO algorithm: Go back 2 steps and remove e3

{e4, e5}

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6} {e1, e2, e4, e5, e6}

{e3, e5, e6} {e3, e4, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

94 / 226

MSO algorithm: Remove e4

{e4, e5}

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6} {e1, e2, e4, e5, e6}

{e1, e2, e5, e6}{e3, e5, e6} {e3, e4, e6}

x1 x2 x3

e1 X
e2 X X X
e3 X X
e4 X
e5 X
e6 X

95 / 226

Example - electrical motor

Tl Tm i T ω

e6

e7

e3

e5

e1

e2

e4

fR

fb

fi

fω

fT

Equivalent classes:

M1 = {e1, e5} X1 = {i} {fR , fi}
M2 = {e3, e7} X2 = {T} {fb, fT}
M3 = {e6} X3 = ∅ {fω}

X4 = {ω}

Fault signatures:

fR fi fb fT fω
r1 X X X
r2 X X X
r3 X X X X

Faults in an equivalence class will be sensitive to the same residuals.

96 / 226

Summary - MSO algorithm

An algorithm for finding all MSO sets for a given model structure

Main ideas:
1 Top-down approach
2 Structural reduction based on the unique decomposition of

overdetermined parts
3 Prohibit that any MSO set is found more than once.

An Efficient Algorithm for Finding Minimal Over-constrained Sub-systems
for Model-based Diagnosis, Mattias Krysander, Jan Åslund, and Mattias
Nyberg. IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, 38(1), 2008.

97 / 226

MTES algorithm

I will now present the algorithm that finds all MTESs and TESs.

A Structural Algorithm for Finding Testable Sub-models and Multiple
Fault Isolability Analysis., Mattias Krysander, Jan Åslund, and Erik Frisk
(2010). 21st International Workshop on Principles of Diagnosis (DX-10).
Portland, Oregon, USA.

It is a slight modification of the MSO algorithm.

Basic idea

There’s no point removing equations that doesn’t contain faults, since
high sensitivity to faults is desirable.

Modification

Stop doing that!

98 / 226

MTES algorithm

In the example e3 is the only equation without fault.
We will not remove e3
We remove e4 instead.

{e1, e2, e3, e4, e5, e6}

{e3, e4, e5, e6} {e1, e2, e3, e5, e6}

{e3, e5, e6}{e4, e5}

{e1, e2, e4, e5, e6}

{e3, e4, e6} {e1, e2, e3, e6} {e1, e2, e3, e5}

The nodes are TES:s and the leaves are MTES:s.

99 / 226

All TSs and TESs for the model

The algorithm traverses all TESs

{f1, f2, f3, f4, f5}
{e1, e2, e3, e4, e5, e6}

{f3, f4, f5}
{e3, e4, e5, e6}

{f1, f2, f4, f5}
{e1, e2, e3, e5, e6}

{f1, f2, f3, f5}
{e1, e2, e3, e4, e6}

{f1, f2, f3, f4}
{e1, e2, e3, e4, e5}

{f4, f5}
{e3, e5, e6}

{f3, f5}
{e3, e4, e6}

{f3, f4}
{e4, e5}

{f1, f2, f5}
{e1, e2, e3, e6}

{f1, f2, f4}
{e1, e2, e3, e5}

{f1, f2, f3}
{e1, e2, e3, e4}

The fault sets above are all possible fault sensitivites!

100 / 226

Scania truck engine example

Original model:

532 equations

8 states

528 unknowns

4 redundant eq.

3 actuator faults

4 sensor faults

Reduces the resulting number of testable sets:
1436 MSO sets cmp. to 32 MTESs which all are MSOs.
Only 6 needed for full single fault isolation.

Reduces the computational burden:
1774 PSO sets ∼ runtime MSO-alg. (2.5 s)
61 TESs ∼ runtime MTES-alg. (0.42 s)
Few number of faults cmp to the number of equations. 101 / 226

Test selection

Many candidate residual generators (MSOs/MTESs) can be
computed, only a few needed for single fault isolation.

Realization of a residual generator can be computationally demanding.

Careful selection of which test to design in order to achieve the specified
diagnosis requirements with few tests.

Later we will also describe how to select tests in order to obtain low
differential index models.

102 / 226

Problem formulation

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix

fR fi fw fT

fR

fi

fw

fT

Isolability matrix for set of ARRs in 'Electric motor'

Test selection problem

Given:

A fault signature matrix (e.g. based on MSO sets/MTES)

A desired fault isolability (e.g. specified as an isolability matrix)

Output: A small set of tests with required strucutral isolability

103 / 226

Fault isolability of tests

NF f1 f2
T 0 X 0

T no alarm ⇒ NF, f1, f2 consistent
T alarm ⇒ f1 consistent

f1 detectable f1 isolable from f2 f2 not isolable from f1

0 50 100 150 200 250 300 350 400 450 500
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Small fault
Large fault
No fault

Isolability of tests and diagnosis systems is not symmetric

Different from isolation by column matching

104 / 226

Test selection is a minimal hitting set problem

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix Requirement for each desired diagnosabil-
ity property:

Detectability:
fR : T1 = {3, 4, 5, 6}
. . .

Isolability:
fR isol.from fi : T2 = {3, 5}
fi isol.from fR : T3 = {1}
fR isol.from fω: T4 = {5, 6}
. . .

Test selection T

A minimal set of tests T is a solution if T ∩ Ti 6= ∅ for all desired
diagnosability properties i .

105 / 226

Test selection

Find all minimal test sets with a minimal hitting set algorithm.

Might easily lead to computationally intractable problems.

J. De Kleer, BC Williams. ”Diagnosing multiple faults”. Artificial
intelligence 32 (1), 97-130, 1987.

Find an approximate minimum cardinality hitting set

A greedy search for one small set of tests. Fast with good complexity
properties, but cannot guarantee to find the smallest set of tests.

Cormen, L., Leiserson, C. E., and Ronald, L. (1990). Rivest, ”Introduction
to Algorithms.”, 1990.

Iterative approach involving both test selection and residual
generation.

106 / 226

Test selection

Many more alternatives in for example:

De Kleer, Johan. ”Hitting set algorithms for model-based diagnosis.” 22th
International Workshop on Principles of Diagnosis, DX, 2011.

107 / 226

Example

NF fR fi fω fT
fR 3− 6 − 3, 5 5, 6 3, 4

fi 1, 4, 6 1 − 1, 6 1, 4

fω 2− 4 2 2, 3 − 3, 4

fT 2, 5, 6 2 2, 5 5, 6 −
Minimal test sets for full single fault isolability: {1, 2, 4, 5},
{1, 2, 3, 5}, {1, 2, 3, 6}
Assume that we do not care to isolate fR and fi , i.e., the desired
isolability can be specified as:

fR fi fω fT
fR 1 1 0 0
fi 1 1 0 0
fω 0 0 1 0
fT 0 0 0 1

Minimum cardinality solution: {2, 4, 6}
108 / 226

Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

f1 f2 f3
r1 X X
r2 X X
r3 X X
r4 X

NF f1 f2 f3
f1 1, 2, 4 − 2, 4 1, 4

f2 1, 3 3 − 1

f3 2, 3 3 2 −

Select residual generator 1. Realization pass.

Select residual generator 2. Realization fails.

Select residual generator 3. Realization pass.

Select residual generator 4. Realization pass.

Realizability Constrained Selection of Residual Generators for Fault
Diagnosis with an Automotive Engine Application. Carl Svärd, Mattias
Nyberg, and Erik Frisk (2013). In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 43(6):1354–1369.

109 / 226

Residual generation

110 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

111 / 226

Residual generation and structural analysis

Structural analysis of model can be of good help

A matching gives information which equations can be used to (in a
best case) compute/estimate unknown variables

Careful treatment of dynamics

Again, not general solutions but helpful approaches in your diagnostic
toolbox

Two types of methods covered here

Sequential residual generation

Observer based residual generation

112 / 226

Example: Air suspension for truck

Principle sketch and model for bellows in an air suspension system in a
truck

h

Pressure
Feed

Ambient
Pressure

Mg

V,p

Mḧ = −Mg + Fb(p, h)− µḣ + f1 (1)

pV (p, h) = mRT (2)

ṁ = u1g1(p) + u2g2(p) + f2 (3)

y1 = p + f3 (4)

y2 = h + f4 (5)

f1 - change in mass M f2 - fault in actuation
f3 - fault in the pressure sensor f4 - fault in distance measurement

113 / 226

Example 1: Isolate from change in mass f1

To isolate from f1, do not use equation (1).

Mḧ = −Mg + Fb(p, h)− µḣ + d (1)

pV (p, h) = mRT (2)

ṁ = u1g1(p) + u2g2(p) + f2 (3)

y1 = p + f3 (4)

y2 = h + f4 (5)

If a residual can be created using equations 2-5 then faults f2, f3, and f4
has been isolated from change in mass f1

114 / 226

Example 1: ARR or observer?

pV (p, h) = mRT (2)

ṁ = u1g1(p) + u2g2(p) + f2 (3)

y1 = p + f3 (4)

y2 = h + f4 (5)

ARR

Elimination looks feasible?
After substitution of sensor
values, two equations remain.

What about dynamics? The
derivative appears linearly.

An ARR approach look
possible.

Observer

The model is a DAE and must
therefore be rewritten in
state-space form.

The state m, is it possible to
estimate without using the
state equation (3)? Yes, solve
m from (2) and substitute the
measurements.

Observer looks possible also.
115 / 226

Example 1: ARR
After substituting measurements, there are two equations

ṁ = u1g1(y1) + u2g2(y1)

y1V (y1, y2) = mRT

Differentiate equation 2 and insert

d

dt
(y1V (y1, y2))− RT (u1g1(y1) + u2g2(y1)) = 0

The derivative appears linearly, so

ṙ + αr =
d

dt
(y1V (y1, y2))− RT (u1g1(y1) + u2g2(y1))

With the state w = r − y1V (y1, y2) the state-space realization is then

ẇ = −α(w + y1V (y1, y2))− RT (u1g1(y1) + u2g2(y1))

r = w + y1V (y1, y2)

116 / 226

Example 1: observer

After substituting measurement signals there are two equationsekvationer
kvar

ṁ = u1g1(y1) + u2g2(y1)

y1V (y1, y2) = mRT

Use the second equation as a measurement equation and feedback to
estimate the state m

˙̂m = u1g1(y1) + u2g2(y1) + K (y1V (y1, y2)− m̂RT)

r = y1V (y1, y2)− m̂RT

117 / 226

Example 2: Isolate from fault f4

To isolate from fault f4, do not use equation (5).

Mḧ = −Mg + Fb(p, h)− µḣ + f1 (1)

pV (p, h) = mRT (2)

ṁ = u1g1(p) + u2g2(p) + f2 (3)

y1 = p + f3 (4)

y2 = h + f4 (5)

If a residual can be created using equations 1-4 then we have isolated f1,
f2, and f3 from fault f4.

118 / 226

Example 2: ARR

Substitute measurement y1 = p and we obtain

Mḧ = −Mg + Fb(y1, h)− µḣ
y1V (y1, h) = mRT

ṁ = u1g1(y1) + u2g2(y1)

To continue the elimination process for h och m is not as easy as last time.

Turns out that we have to differentiate equation (2) three times, leading
to y (3) will be included in the ARR.

An ARR approach is not attractive, try an observer approach!

119 / 226

Example 2: Observer
Write the model in state-space form with x = (h, ḣ,m)

Mḧ = −Mg + Fb(y1, h)− µḣ
y1V (y1, h) = mRT ⇒
ṁ = u1g1(y1) + u2g2(y1)

ẋ1 = x2

ẋ2 = −g +
1

M
Fb(y1, x1)− µ

M
x2

ẋ3 = u1g1(y1) + u2g2(y1)

0 = y1V (y1, x1)− x3RT
Again, with the last equation as a measurement equation we get a residual
generator in the form

˙̂x1 = x̂2 +K1(y1V (y1, x̂1)− x̂3RT)

˙̂x2 = −g +
1

M
Fb(y1, x̂1)− µ

M
x̂2 +K2(y1V (y1, x̂1)− x̂3RT)

˙̂x3 = u1g1(y1) + u2g2(y1) +K3(y1V (y1, x̂1)− x̂3RT)

r = y1V (y1, x̂1)− x̂3RT

där Ki väljs s̊a att x̂ → x , dvs. vi har stabilitet.
120 / 226

Sequential residual generation

Basic idea

Given: A set of equations with redundancy
Approach: Choose computational sequence for the unknown variables and
check consistency in redundant equations

Popular in DX community

Easy to automatically generate residual generators from a given model

choice how to interpret differential constraints, derivative/integral
causality

Interesting, but not without limitations

121 / 226

Sequential residual generation

5 equations, 4 unknowns

e1 : ẋ1 − x2 = 0

e2 : ẋ3 − x4 = 0

e3 : ẋ4x1 + 2x2x4 − y1 = 0

e4 : x3 − y3 = 0

e5 : x2 − y2 = 0

x1 x2 x4 x3
e5 X
e1 X X
e3 X X X
e2 X
e4 X

Solve according to order in decomposition:

e4 : x3 := y3 e2 : x4 := ẋ3

e3 : ẋ1 := x2 e1 : x2 :=
−ẋ4x1 + y1

2x4

Compute a residual:
e5 : r := y2 − x2

122 / 226

Basic principle - Sequential residual generation

Basic approach

1 Given a testable set of equations (MSO/MTES/. . .)

2 Compute a matching (Dulmage-Mendelsohn decomposition)

3 Solve according to decomposition (numerically or symbolically)

4 Compute residuals with the redundant equations

123 / 226

Illustrative example

�� �� ��
�� �� ��

�� ��

��

e1 : q1 =
1

RV 1
(p1 − p2) e5 : ṗ2 =

1

CT2
(q1 − q2) e9 : y3 = q0

e2 : q2 =
1

RV 2
(p2 − p3) e6 : ṗ3 =

1

CT3
(q2 − q3) e10 : ṗ1 =

dp1
dt

e3 : q3 =
1

RV 3
(p3) e7 : y1 = p1 e11 : ṗ2 =

dp2
dt

e4 : ṗ1 =
1

CT1
(q0 − q1) e8 : y2 = q2 e12 : ṗ3 =

dp3
dt

124 / 226

Find overdetermined sets of equations

There are 6 MSO sets for the model, for illustration, use

M = {e1, e4, e5, e7, e8, e9, e10, e11}

Redundancy 1: 8 eq., 7 unknown variables (q0, q1, q2, p1, p2, ṗ1, ṗ2)

e1 : q1 =
1

RV 1
(p1 − p2) e7 : y1 = p1 e10 : ṗ1 =

dp1
dt

e4 : ṗ1 =
1

CT1
(q0 − q1) e8 : y2 = q2 e11 : ṗ2 =

dp2
dt

e5 : ṗ2 =
1

CT2
(q1 − q2) e9 : y3 = q0

Redundant equation

For illustration, choose equation e5 as a redundant equation, i.e., compute
unknown variables using (e1, e4, e7, e8, e9, e10, e11)

125 / 226

Compute a matching

e1 : q1 =
1

RV 1
(p1 − p2) e7 : y1 = p1 e10 : ṗ1 =

dp1
dt

e4 : ṗ1 =
1

CT1
(q0 − q1) e8 : y2 = q2 e11 : ṗ2 =

dp2
dt

e9 : y3 = q0

ṗ2 p2 q1 ṗ1 p1 q0 q2
e11 X X
e1 X X X
e4 X X X
e10 X X
e7 X
e9 X
e8 X

126 / 226

Computational graph for matching

ṗ2 p2 q1 ṗ1 p1 q0 q2
e11 X X
e1 X X X
e4 X X X
e10 X X
e7 X
e9 X
e8 X

y3

e9

q0

y1

e7

p1

e10

ṗ1

e4

q1
e1

p2

e11

ṗ2

y2

e8

q2

e5

r

Equations e10 and e11 in derivative causality.

127 / 226

Residual generator code

Fairly straightforward to generate code automatically for this case

Code

q2 = y2; % e8

q0 = y3; % e9

p1 = y1; % e7

dp1 = ApproxDiff(p1,state.p1,Ts); % e10

q1 = q0-CT1*dp1; % e4

p2 = p1-Rv1*q1; % e1

dp2 = ApproxDiff(p2,state.p2,Ts); % e11

r = dp2-(q1-q2)/CT2; % e5

128 / 226

Causality of sequential residual generators

Derivative causality

y3

e9

q0

y1

e7

p1

e10

ṗ1

e4

q1
e1

p2

e11

ṗ2

y2

e8

q2

e5

r

Integral and mixed causality

y3

e9

q0 e4

ṗ1

e10

p1

q1

e1

y2

e8

q2 e5

ṗ2
e11

p2

y1

e7

r

y3

e9

q0

y1

e7

p1

e10

ṗ1

e4

q1 e5

ṗ2

e11

p2

e6

ṗ3

e12

p3
q3

e3
y2

e8

q2

e2

r

129 / 226

Causality of sequential residual generators

Derivative causality

+ No stability issues
- Numerical differentiation highly sensitive to noise

Integral causality

- Stability issues
+ Numerical integration good wrt. noise

Mixed causality - a little of both

Not easy to say which one is always best, but generally integration is
preferred to differentiation

130 / 226

Matching and Hall components

T i ω

e3 X X fb
e5 X fi
e6 X fω
e1 X X fR yi

yω

e6

ω

i

r

e5

e1

e3

T

Here the matching gives a computational sequence for all variables

Important!

This is generally not true

131 / 226

Hall components & Dulmage-Mendelsohn decomposition

b0

b1

b2

. . .

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M−

M0

M+

The blocks in the exactly determined part is called Hall components

If a Hall component is of size 1; compute variable xi in equation ei
If Hall component is larger (always square) than 1 ⇒ system of
equations that need to be solved simultaneously

132 / 226

Hall components and computational loops

5 equations, 4 unknowns

e1 : ẋ1 − x2 = 0

e2 : ẋ3 − x4 = 0

e3 : ẋ4x1 + 2x2x4 − y1 = 0

e4 : x3 − y3 = 0

e5 : x2 − y2 = 0

x1 x2 x4 x3
e5 X
e1 X X
e3 X X X
e2 X
e4 X

Two Hall components of size 1 and one of size 2

(x3, e4)→ (x4, e2)→ ({x1, x2}, {e1, e5})

If only algebraic constraints ⇒ algebraic loop
If differential constraint ⇒ loop in integral causality

A matching finds computational sequences, including identifing
computational loops

133 / 226

Observer based residual generation
The basic idea in observer based residual generation is the same as in
sequential residual generation

1 Estimate/compute unknown variables x̂

2 Check if model is consistent with x̂

With an observer the most basic setup model/residual generator is

ẋ = g(x , u) ˙̂x = g(x̂ , u) + K (y − h(x̂ , u))

y = h(x , u) r = y − h(x̂ , u)

Design procedures typically available for state-space models

pole placement

EKF/UKF/Monte-Carlo filters

Sliding mode

. . .

Submodels like MSE/MTES are not typically in state-space form!

134 / 226

DAE models

DAE model

An MSO/submodel consists of a number of equations gi , a set of dynamic
variables x1, and a set of algebraic variables x2

gi (dx1, x1, x2, z , f) = 0 i = 1, . . . , n

dx1 =
d

dt
x1

A DAE model where you can solve for highest order derivatives dx1
and x2, is called a low-index, or low differential-index, DAE model.

Essentially equivalent to state-space models

For structurally low-index problems, code for observers can be generated

135 / 226

Example: Three Tank example again

e1 : q1 =
1

RV 1
(p1 − p2) e5 : ṗ2 =

1

CT2
(q1 − q2) e8 : y2 = q2

e4 : ṗ1 =
1

CT1
(q0 − q1) e7 : y1 = p1 e9 : y3 = q0

MSO M = {e1, e4, e5, e7, e8, e9, e10, e11}

This is not a state-space form, suitable for standard observer design
techniques. But it is low-index so it is close enough.

Partition model using structure

Dynamic equations

ṗ1 =
1

CT1
(q0 − q1)

ṗ2 =
1

CT2
(q1 − q2)

Algebraic equations

0 = q0 − y3

0 = q1RV 1 − (p1 − p2)

0 = q2 − y2

Redundant equation

r = y1 − p1

136 / 226

Partition to DAE observer

Partition model using structure

Dynamic equations

ṗ1 =
1

CT1
(q0 − q1)

ṗ2 =
1

CT2
(q1 − q2)

Algebraic equations

0 = q0 − y3

0 = q1RV 1 − (p1 − p2)

0 = q2 − y2

Redundant equation

r = y1 − p1

DAE observer

˙̂p1 =
1

CT1
(q̂0 − q̂1) + K1r 0 = q̂0 − y3

˙̂p2 =
1

CT2
(q̂1 − q̂2) + K2r 0 = q̂1RV 1 − (p̂1 − p̂2)

0 = q̂2 − y2

0 = r − y1 + p̂1
137 / 226

Models with low differential index
A low-index DAE model

gi (dx1, x1, x2, z , f) = 0 i = 1, . . . , n

dx1 =
d

dt
x1 i = 1, . . . ,m

has the property (
∂g
∂dx1

∂g
∂x2

)∣∣∣
x=x0, z=z0

full column rank

Structurally, this corresponds to a maximal matching with respect to dx1
and x2 in the model structure graph.

Model can be transformed into the form

ẋ1 = g1(x1, x2, z , f)

0 = g2(x1, x2, z , f),
∂g2
∂x2

is full column rank

0 = gr (x1, x2, z , f)

138 / 226

DAE observer for low-index model
For a model in the form

ẋ1 = g1(x1, x2, z , f)

0 = g2(x1, x2, z , f),
∂g2
∂x2

is full column rank

0 = gr (x1, x2, z , f)

a DAE-observer can be formed as

˙̂x1 = g1(x̂1, x̂2, z) + K (x̂ , z)gr (x̂1, x̂2, z)

0 = g2(x̂1, x̂2, z)

The observer estimates x1 and x2, and then a residual can be computed as

r = gr (x̂1, x̂2, z)

Important: Very simple approach, no guarantees of observability of
performance

139 / 226

DAE observer for low-index model

The observer
˙̂x1 = g1(x̂1, x̂2, z) + K (x̂ , z)gr (x̂1, x̂2, z)

0 = g2(x̂1, x̂2, z)

r = gr (x̂1, x̂2, z)

corresponds to the standard setup DAE

Mẇ =

g1(x̂1, x̂2, z) + K (x̂ , z)gr (x̂1, x̂2, z)
g2(x̂1, x̂2, z)

r − gr (x1, x2, z)

 = F (w , z)

where the mass matrix M is given by

M =

(
In1 0n1×(n2+nr)

0(n2+nr)×n1 0(n2+nr)×(n2+nr)

)

140 / 226

Run the residual generator

Low-index DAE models and ODE solvers

A dynamic system in the form

Mẋ = f (x)

with mass matrix M possibly singular, can be integrated by (any) stiff
ODE solver capable of handle low-index DAE models.
Example: ode15s in Matlab.

Fairly straightforward, details not included, to generate code for
function f (x) above for low-index problems

Code generation similar to the sequential residual generators, but only
for the highest order derivatives

Utilizes efficient numerical techniques for integration

141 / 226

Diagnosability analysis

142 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

143 / 226

Problem formulation

Given a dynamic model: What are the fault isolability properties?

144 / 226

Diagnosability analysis

Diagnosability analysis

Determine for a

1 model

2 diagnosis system

which faults that are structurally detectable and what are the structural
isolability properties.

MSO based approach

Since the set of MSOs characterize all possible fault signatures, the MSOs
can be used to determine structural isolability of a given model.
Often computationally intractable. Just too many.

Better way

Utilize steps in the MSO algorithm; equivalence classes!

145 / 226

Isolability matrices

Interpretation

A X in position (i,j) indicates that fault fi can not be isolated from fault fj

fpaf fWaffomegat fvol fWc fWic fWth fxth1 fypic fypim fyTic fyWaf

fpaf

fWaf

fomegat

fvol

fWc

fWic

fWth

fxth1

fypic

fypim

fyTic

fyWaf

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'

146 / 226

Diagnosability analysis for a set of tests/model
A test/residual with fault sensitivity

f1 f2
r X 0

makes it possible to isolate fault f1 from fault f2. Now, consider single
fault isolability with a diagnosis system with the fault signature matrix

f1 f2 f3
r1 X X 0
r2 0 X X

The corresponding isolability matrix is then

f1 f2 f3
f1 X X 0
f2 0 X 0
f3 0 X X

147 / 226

Structural fault modelling

Assumption

A fault f only violates 1 equation, referred to by ef .

If a fault signal f appears in more than one position in the model,

e1 : 0 = g1(x1, x2) + xf

e2 : 0 = g2(x1, x2) + xf

e3 : xf = f

1 Introduce new unknown variable xf
2 Add new equation xf = f

Now, the model fulfills the assumption.

148 / 226

Structural detectability and Dulmage-Mendelsohn

Detectability

A fault f is structurally detectable if ef ∈ M+.

b0

b1

b2

. . .

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M0

M1

M2

...

Mn−1

Mn

M∞

f1

f2

Fault f1 not detectable

Fault f2 detectable

149 / 226

Detectability in small example

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

e6 : y1 = x1

e7 : y2 = x3

x1 x2 x3 x4 x5

e7

e6

e5

e4

e3

e2

e1

f1
f2

f3

f4

150 / 226

Structural isolability

Isolability

A fault Fi is isolable from fault Fj if O(Fi) 6⊆ O(Fj)

Meaning, there exists observations from the faulty mode Fi that is not
consistent with the fault mode Fj .

Structurally, this corresponds to the existence of an MSO that include
efi but not efj

Fi Fj
r X 0

or equivalently, fault Fi is detectable in the model where fault Fj is
decoupled

Structural isolability

Fi structurally isolable from Fj iff efi ∈
(
M \ {efj}

)+
Structural single fault isolability can thus be determined by n2f
M+-operations. For single fault isolability, we can do better.

151 / 226

Equivalence classes and isolability
From before we know that M+ of a model can be always be written on the
canonical form

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����������������

��
��
��

��
��
��

X1X2 · · ·Xn X0

M1

M2

...
...

...

Mn
Mn+1

Mm

+1

+1

+1

. . .

Equivalence classes Mi has the defining property: remove one
equation e, then none of the equations are members of (M \ {e})+
Detectable faults are isolable if and only if they influence the model in
different equivalence classes

152 / 226

Isolability from fault f3 in small example

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

e6 : y1 = x1

e7 : y2 = x3

x1 x2 x3 x4 x5

e7

e6

e5

e4

e3

e2

e1

f1
f2

f3

f4

Equivalence class [e4]

[e4] = {e1, e2, e4, e6}
153 / 226

Method - Diagnosability analysis of model

Method

1 Determine equivalence
classes in M+

Mef = M \ {ef }
[ef] = M+ \M+

ef

2 Faults appearing in the
same equivalence class
are not isolable

3 Faults appearing in
separate equivalence
classes are isolable

Variables
x1 x2 x4 x3 x5

E
qu

at
io

ns

e1

e2

e4

e6

e3

e5

e7

f1, f2

f3

f4

154 / 226

Example system - A automotive engine with EGR/VGT

ne

Wt

TurbineIntake
manifold

ωt

EGR cooler

Wegr

uegr

EGR valve

pim

Wth

uth

Intake throttle Intercooler

pc
Wc

Exhaust
manifold

Compressor

uvgt

uδ

Cylinders

Wei pemWeo

Tem

f1

f2

f3

f4 f5

f8

f7
f6

f9

f10

f11

f12

f13

155 / 226

Model structure

e1e2e3e4e5e6e7e8e9e10e11e12e13e14e15e16e17e18e19e20e21e22e23e24e25e26e27e28e29e30e31e32e33e34e35e36e37e38e39e40e41e42e43e44e45e46e47e48e49e50e51e52e53e54e55e56e57e58e59e60e61e62e63e64e65e66e67

D

I

D I
D ID ID

ID
I

D

I
D

I

D
I

D

I

D I
D

I

D I

dp
af

dT
af

dp
c

dT
c

dp
ic

dT
ic

dp
im

dT
im

dp
em

dT
em dp

t
dT

t
do

m
eg

at
et

ac
et

at
la

m
bd

ac
om

eg
at

om
eg

ae pa
f

pa
m

b pc pi
c

xw
g

pi
m

pe
m pt

W
th

P
Ic P
It

T
af T
ic

T
am

b T
c

T
c1

T
eo

T
em T
im

T
qc T
qt T

t
T

th T
ti

T
to

T
flo

w
T

tu
rb

o
T

af
1

W
af

W
c

W
ei W
f

W
eo W
ic W
t

W
es

W
es

fin
al

W
w

g
xt

h
T

w
g1 T
t1

xf
pa

f
fp

af
fo

m
eg

at
fv

ol
fW

af
fW

c
fW

ic
fW

th
fx

th
1

fy
pi

c
fy

pi
m

fy
T

ic
fy

W
af

yT
c

yp
c

yT
ic

yp
ic

yT
im

yp
im

yW
af

up
am

b
uT

am
b

ux
th

1
ul

am
bd

ac
ux

w
g

uo
m

eg
ae

Structural Model of A Single Turbo Petrol Engine

156 / 226

Dulmage-Mendelsohn with equivalence classes

Variables
dTafdpafdTcdpcdTicTflowdpicdTimdpimdTemTeoTtidpemdTtTturboTwg1dptdomegatTqcTqtxfpafetacPIcxthomegaelambdacWfxwgetatomegatpafpambpcpicpimpemptWthPItTafTicTambTcTc1TemTimTtTthTtoTaf1WafWcWeiWeoWicWtWesWesfinalWwgTt1

E
qu

at
io

ns

e1e43e2e42e3e45e4e44e5e22e47e6e46e7e49e8e48e9e29e30e51e10e50e11e31e39e53e12e52e13e21e37e54e15e16e17e19e20e25e57e26e60e27e28e58e32e59e34e35e14e18e23e24e33e36e38e40e41e55e56e61e62e63e64e65e66e67

fpaf

fomegat

fvol

fWaf

fWcfWic

fWthfxth1

fypic
fypim

fyTic

fyWaf

157 / 226

Fault isolation matrix for engine model

fpaf fWaffomegat fvol fWc fWic fWth fxth1 fypic fypim fyTic fyWaf

fpaf

fWaf

fomegat

fvol

fWc

fWic

fWth

fxth1

fypic

fypim

fyTic

fyWaf

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'

158 / 226

Structural detectability and isolability

A fault f is structurally detectable if ef ∈ M+.

A fault fi is structurally isolable from fj if efi ∈
(
M \ {efj}

)+
Structural detectability and isolability properties can be obtained by a
number of C+ operations.

159 / 226

Diagnosability under a causal interpretation

C+
causal = set of monitorable constraints under a causal interpretation of

differential constraints.

Definition (Causal Structural Detectability/Isolability)

A fault f is causally structurally detectable in a model if

cf ∈ C+
causal

A fault fi is causally structurally isolable from fj in a model if

cfi ∈ (C \ {cfj})+causal

No details here: Possible to define C+
causal for integral, derivative, and

mixed.

160 / 226

Solvability of a set of exactly determined equations

D I

Integral

D I

Derivative

D I

D I

Mixed

161 / 226

Causality and differential index

Low index problems

algebraic or integral causality

High index problems

mixed or differential causality

Makes it possible to analyze what isolability performance can be obtained
using direct application of state-space techniques, e.g., state-observers

162 / 226

The automotive engine – mixed causality

>> model.IsolabilityAnalysis();

fp_af fw_af fw_th fw_c fc_vol fw_t fx_th fyw_affyp_imfyp_ic fyT_ic

fp_af

fw_af

fw_th

fw_c

fc_vol

fw_t

fx_th

fyw_af

fyp_im

fyp_ic

fyT_ic

Isolability matrix for 'Engine model'

163 / 226

The automotive engine – integral causality

>> model.IsolabilityAnalysis(’causality’, ’int’);

fp_af fw_af fw_th fyw_affyp_imfyp_ic fyT_ic fw_c fc_vol fw_t fx_th

fp_af

fw_af

fw_th

fyw_af

fyp_im

fyp_ic

fyT_ic

fw_c

fc_vol

fw_t

fx_th

Isolability matrix for 'Engine model' (integral causality)

164 / 226

The automotive engine – derivative causality

>> model.IsolabilityAnalysis(’causality’, ’der’);

fw_th fc_vol fw_t fw_af fp_af fw_c fx_th fyw_affyp_imfyp_ic fyT_ic

fw_th

fc_vol

fw_t

fw_af

fp_af

fw_c

fx_th

fyw_af

fyp_im

fyp_ic

fyT_ic

Isolability matrix for 'Engine model' (derivative causality)

165 / 226

Diagnosability analysis for a fault signature matrix

Isolability properties of a set of residual generators

Previous results: structural diagnosability properties of a model, what
about diagnosability properties for a diagnosis system

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix

A test with fault sensitivity

fi fj
r1 X

isolates fault fi from fj .

For example, MSO2 isolates

1 Fault fw from fR and fi ,

2 Fault fT from fR and fi

166 / 226

Diagnosability analysis for a fault signature matrix

Fault
fR fi fw fT

MSO1

MSO2

MSO3

MSO4

MSO5

MSO6

Fault Signature Matrix

⇒

fR fi fw fT

fR

fi

fw

fT

Isolability matrix for set of ARRs in 'Electric motor'

Rule: Diagnosability properties for a FSM

Fault fi is isolable from fault fj if there exists a residual sensitive to fi but
not fj

167 / 226

Sensor Placement Analysis

168 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

169 / 226

A motivating example and problem formulation

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

Question: Where should I place sensors to make faults f1, . . . , f4 detectable
and isolable, as far as possible?

For example:

{x1}, {x2}, {x3, x4} ⇒ detectability of all faults

{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4} ⇒
maximum, not full, fault isolability of f1, . . . , f4

{x1, x1, x3} ⇒ Possible to isolate also faults in the new sensors

More than one solution, how to characterize all solutions?

170 / 226

Minimal sensor sets and problem formulation

Given:

A set P of possible sensor locations

A detectability and isolability performance specification

Minimal Sensor Set

A multiset S , defined on P, is a minimal sensor set if the specification is
fulfilled when the sensors in S are added, but not fulfilled when any proper
subset is added.

Problem Statement

Find all minimal sensor sets with respect to a required isolability
specification and possible sensor locations for any linear
differential-algebraic model

171 / 226

A Structural Model

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

x1 x2 x3 x4 x5

e5

e4

e3

e2

e1

f1
f2

f3

f4

172 / 226

Detectability

Assume that a fault f only violate 1 equation, ef .

Detectability

A fault f is structurally detectable if ef ∈ M+.

b0

b1

b2

. . .

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M0

M1

M2

...

Mn−1

Mn

M∞

f1

f2

Fault f1 not detectable

Fault f2 detectable

173 / 226

Sensor Placement for Detectability

e1 : ẋ1 = −x1 + x2 + x5

e2 : ẋ2 = −2x2 + x3 + x4

e3 : ẋ3 = −3x3 + x5 + f1 + f2

e4 : ẋ4 = −4x4 + x5 + f3

e5 : ẋ5 = −5x5 + u + f4

e6 : y = x3

Measure x3 → {f1, f2, f4}
x1 x2 x3 x4 x5

e5

e4

e3

e2

e1

f1

f2

f3

f4

e6

b1

b2

b3

b4

b5

174 / 226

Define a Partial Order on bi

Partial Order on bi

bi ≥ bj if element (i , j) is shaded

x1 x2 x3 x4 x5

e5

e4

e3

e2

e1

f1

f2

f3

f4

e6

b1

b2

b3

b4

b5

⇒

b1

b2

b3 b4

b5

Lemma

Let ei measure a variable in bi then

all equal and lower ordered blocks are included in the overdetermined part.

175 / 226

Minimal Sensor Sets - Detectability

Detectability Set

D([fi]) = measurements that give detectability of fault fi

= all variables in equal and higher ordered blocks

b1

b2

b3

b4

b5

x1 x2 x3 x4 x5

e5

e4

e3

e2

e1

f1

f2

f3

f4

⇒

b1

b2

b3 b4

b5

f1

⇒

D(f1) = {x1, x2, x3}
D(f2) = {x1, x2, x3}
D(f3) = {x1, x2, x4}
D(f4) = {x1, x2, x3,x4, x5}

176 / 226

Minimal Sensor Sets - Detectability

Sensor set for detectability

S is a sensor set achieving detectability if and only if S has a non-empty
intersection for all D(fi).

A standard minimal hitting-set algorithm can be used to obtain the
minimal sensor sets.

D(f1) = {x1, x2, x3}
D(f2) = {x1, x2, x3}
D(f3) = {x1, x2, x4}
D(f4) = {x1, x2, x3,x4, x5}

⇒ {x1}, {x2}, {x3, x4}

177 / 226

Sensor placement for isolability

x1 x2

e4

e3

e2

e1f1

f2

f3

fi is isolable from f1 if there exists a residual r
such that

fi f1
r X 0

Isolability characterization: fi is structurally
isolable from f1 if efi ∈ (M \ {ef1})+.

f3 is isolable from f1 in M = {e1, . . . , e4} and f3
is detectable in M \ {e1}
The sensor placement problem of achieving isola-
bility from f1 in M is transformed to the problem
of achieving detectability in M \ {e1}.
Proceed as in the linear case to achieve isolabil-
ity.

178 / 226

Sensor placement for maximal isolability

x1 x2 x3 x4 x5

e6

e5

e4

e3

e2

e1

f1
f2

f3

f4

detectability necessary for
isolability

minimal sensor sets: {x1},
{x2}, {x3, x4}
add e.g. measurement x1

all faults are detectable

179 / 226

Making faults isolable from f1

x1 x2 x3 x4 x5

e7

e6

e5

e4

e3

e2

e1

f1
f2

f3

f4

Which faults are isolable from
f1 with existing sensors?

⇒ no faults are isolable from
f1

Applying the detectability
algorithm gives detectability
sets

D(f3) = {x3, x4}
D(f4) = {x3, x4, x5}

180 / 226

Achieving maximum isolability

detectability sets for maximum isolability

isolate from {f1, f2} : {x3, x4}
isolate from f3 : {x3, x4}
isolate from f4 : {x2, x3, x4, x5}

⇒ {x3}, {x4}

measurement x1 was added to achieve detectability

Maximal isolability is obtained for
{x1, x3}, {x1, x4}

This is not all minimal sensor sets!

181 / 226

Achieving maximum isolability

Minimal sensor sets for full detectability

{x1}, {x2}, {x3, x4}

The first set {x1} was selected, iterate for all!

Minimal sensor sets for maximum isolability:

{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}

182 / 226

How about faults in the new sensors?

“Sloppy” versions of two results

Lemma

Faults in the new sensors are detectable

This is not surprising, a new sensor equation will always be in the over
determined part of the model, that was its objective.

Lemma

Let F be a set of detectable faults in a model M and fs a fault in a new
sensor. Then it holds that fs is isolable from all faults in F automatically.

This result were not as evident to me, but it is nice since it makes the
algorithm for dealing with faults in the new sensors very simple.

183 / 226

Method summary

1 For each detectability and isolability requirement, compute
detectability sets

Dulmage-Mendelsohn decomposition + identify partial order

2 Apply a minimal hitting-set algorithm to all detectability sets to
compute all minimal sensor sets

The minimal sensor sets is a characterization of all sensor sets

184 / 226

Example: An electrical circuit

A small electrical circuit with 5 components that may fail

z

C
R2

1

R1L

24

53

v1 = v5 v5 = v2 + v3

i1 = i2 + i5 i1 = i3 + i4 + i5

v1 = z v2 = R1i2

v4 = L
d

dt
i4 i5 = C

d

dt
v5

v3 = v4 v3 = R2i3

10 equations, 2 states, 5 faults, 1 known signal

Possible measurements: currents and voltages

185 / 226

Examples of results of the analysis

C
R2

1

R1L

24

53

z

Example run 2

Objective Achieve full isolability
Possible measurement voltages and currents

5 minimal solutions

{i1, i3} , {i1, i4}, {i2, i3, i5}, {i2, i4, i5}, {i3, i4, i5}

186 / 226

Analytical vs structural properties

187 / 226

Outline

Introduction

Structural models and basic definitions

Diagnosis system design

Residual generation

Diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine

188 / 226

Analytical vs structural properties

Structural analysis, applicable to a large class of models without
details of parameter values etc.

One price is that only best-case results are obtained

Relations between analytical and structural results and properties an
interesting, but challenging area

Have not seen much research in this area

Book with a solid theoretical foundation in structural analysis

Murota, Kazuo. “Matrices and matroids for systems analysis”. Springer,
2009.

189 / 226

You have to be careful

f2

f1

foutfin

fin = x

fout = x

y1 = fin

y2 = fout

x = f1 + f2

x fin f1 f2 fout
c1 X X
c2 X X
c3 X
c4 X
c5 X X X

Now, a leak is structurally detectable!

For structural methods to be effective, do as little manipulation as
possible. Modelica/Simulink is a quite good representation of models for
structural analysis.

190 / 226

Basic assumptions for structural analysis

Structural rank sprank(A) is equal to the size of a maximum
matching of the corresponding bipartite graph.

rank(A) ≤ sprank(A)

Structural analysis can give wrong results when a matrix or a
sub-matrix is rank deficient, i.e., rank(A) � sprank(A).

Example

[
y1
y2

]
=

A=︷ ︸︸ ︷[
1 1
1 1

] [
x1
x2

]
Redundancy relation y1 − y2 = 0.

Astr =

[
X X
X X

]
Structual matrix just-determined
⇒ no redundancy

Wrong structural results because A is rank deficient:

rank(A) = 1 < 2 = sprank(A)

191 / 226

Exercise

Exercise

a) Compute the fault isolability of the model below.

b) Eliminate T in the model by using equation e4. The resulting model
with 6 equations is of course equivalent with the orignal model.
Compute the fault isolability for this model and compare it with the
isolability obtained in (a).

e1 : V = i(R + fR) + L
di

dt
+ Kaiω e5 : yi = i + fi

e2 : Tm = Kai
2 e6 : yω = ω + fω

e3 : J
dω

dt
= T − (b + fb)ω e7 : yT = T + fT

e4 : T = Tm − Tl

192 / 226

Isolability properties depends on model formulation

Original

fR fi fw fT

fR

fi

fw

fT

Isolability Matrix
Modified model

fR fi fw fT

fR

fi

fw

fT

Isolability Matrix, T eliminated

193 / 226

Isolability properties depends on model formulation

Original

Variables
th dth alpha Tl Tm dI I dw T w

E
qu

at
io

ns

e12

e5

e6

e4

e2

e1

e7

e10

e3

e9

e11

e8

fR

fi

fw

fT

PSO decomposition
Modified model

Variables
th dth alpha dI dw Tm Tl I w

E
qu

at
io

ns

e12

e5

e6

e1

e10

e2

e3

e9

e11

e7

e8

fR

fi

fw

fT

PSO decomposition, T eliminated

194 / 226

Use-case: an automotive engine

195 / 226

Outline
Introduction

Decision Making

Structural models and basic definitions

Diagnosis system design

Residual generation
Residual generation examples

Diagnosability analysis
Differential index, causality and diagnosability analysis

Sensor placement analysis

Analytical vs structural properties

Use-case: an automotive engine
Problem definition
Modelling
Isolability analysis and test selection
Evaluation on experimental data

196 / 226

Model based design for an automotive engine

Modelling

How to model
Simulink, Modelica,
equations

Analysis

Diagnosability
Observability
Possible tests

Design

Residual generator design
Code generation

Evaluation on test cell data

197 / 226

Case study - sensors and actuators

Sensors (8)

Pressure
(throttle, intake ambient)
Temperature
(throttle, ambient)
Air mass flow
Engine speed
Throttle position

Actuators (2)

Wastegate position
Injected fuel

198 / 226

Case study - considered faults

Clogged air filter

Leakage

before compressor
after throttle
before intercooler

Intake valve fault

Increased turbine friction

Sensor faults

Throttle position
air mass flow
intake manifold pressure
pressure before throttle
temperature before
throttle

199 / 226

Modelling of automotive engines

Modelling diesel engines with a variable-geometry
turbocharger and exhaust gas recirculation by
optimization of model parameters for capturing
non-linear system dynamics
J Wahlström* and L Eriksson

Department of Electrical Engineering, Linköping University, Linköping, Sweden

The manuscript was received on 12 February 2010 and was accepted after revision for publication on 4 January 2011.

DOI: 10.1177/0954407011398177

Abstract: A mean-value model of a diesel engine with a variable-geometry turbocharger
(VGT) and exhaust gas recirculation (EGR) is developed, parameterized, and validated. The
intended model applications are system analysis, simulation, and development of model-
based control systems. The goal is to construct a model that describes the gas flow dynamics
including the dynamics in the manifold pressures, turbocharger, EGR, and actuators with few
states in order to obtain short simulation times. An investigation of model complexity and
descriptive capabilities is performed, resulting in a model that has only eight states. A
Simulink implementation including a complete set of parameters of the model are available
for download. To tune and validate the model, stationary and dynamic measurements have
been performed in an engine laboratory. All the model parameters are estimated automati-
cally using weighted least-squares optimization and it is shown that it is important to tune
both the submodels and the complete model and not only the submodels or not only the
complete model. In static and dynamic validations of the entire model, it is shown that the
mean relative errors are 5.8 per cent or lower for all measured variables. The validations also
show that the proposed model captures the system properties that are important for control
design, i.e. a non-minimum phase behaviour in the channel EGR valve to the intake manifold
pressure and a non-minimum phase behaviour, an overshoot, and a sign reversal in the VGT
to the compressor mass flow channel, as well as couplings between channels.

Keywords: diesel engines, modelling, variable-geometry turbocharger, exhaust gas
recirculation, non-linear system

1 INTRODUCTION

Legislated emission limits for heavy-duty trucks are
constantly being reduced. To fulfil the requirements,
technologies such as exhaust gas recirculation (EGR)
systems and variable-geometry turbochargers (VGTs)
have been introduced. The primary emission reduc-
tion mechanisms utilized to control the emissions

are that nitrogen oxides NOx can be reduced by
increasing the intake manifold EGR fraction xegr and
smoke can be reduced by increasing the oxygen-
to-fuel ratio lO [1]. However, xegr and lO depend in
complicated ways on the actuation of the EGR and
VGT. It is therefore necessary to have coordinated
control of the EGR and VGT to reach the legislated
emission limits in NOx and smoke. When developing
and validating a controller for this system, it is desir-
able to have a model that describes the system
dynamics and the non-linear effects that are impor-
tant for gas flow control. These important properties

*Corresponding author: Department of Electrical Engineering,

Linköping University, Linköping 58183, Sweden.

email: johan.erik.wahlstrom@gmail.com

960

Proc. IMechE Vol. 225 Part D: J. Automobile Engineering

 at Linkoping University Library on August 30, 2015pid.sagepub.comDownloaded from

200 / 226

Modelling of automotive engines, non-linear equations

the dynamic measurements in the data set B and C
in Table 1, see section 8.1 for more details.

4 CYLINDER

Three submodels describe the behaviour of the cyl-
inder; these are as follows:

(a) a mass flow model that describes the gas and
fuel flows that enter and leave the cylinder, the
oxygen-to-fuel ratio, and the oxygen concen-
tration out from the cylinder;

(b) a model of the exhaust manifold temperature;
(c) an engine torque model.

4.1 Cylinder flow

The total mass flow Wei from the intake manifold
into the cylinders is modelled using the volumetric
efficiency hvol [1] and is given by

Wei =
hvol pim ne Vd

120Ra Tim
(11)

where pim and Tim are the pressure and temperature
respectively in the intake manifold, ne is the engine
speed, and Vd is the displaced volume. The volu-
metric efficiency is in its turn modelled as

hvol = cvol1
ffiffiffiffiffiffiffiffi
pim
p

+ cvol2
ffiffiffiffiffi
ne
p

+ cvol3 (12)

The fuel mass flow Wf into the cylinders is con-
trolled by ud, which gives the injected mass of fuel
in milligrams per cycle and cylinder as

Wf =
10!6

120
ud ne ncyl (13)

where ncyl is the number of cylinders. The mass
flow Weo out from the cylinder is given by the mass
balance as

Weo = Wf + Wei (14)

The oxygen-to-fuel ratio lO in the cylinder is
defined as

lO =
Wei XOim

Wf (O=F)s
(15)

where (O=F)s is the stoichiometric ratio of the
oxygen mass to the fuel mass. The oxygen-to-fuel
ratio is equivalent to the air-to-fuel ratio which is

a common choice of performance variable in the lit-
erature [18, 20–22].

During the combustion, the oxygen is burned in
the presence of fuel. In diesel engines, lO . 1 to
avoid smoke. Therefore, it is assumed that lO . 1
and the oxygen concentration out from the cylinder
can then be calculated as the unburned oxygen
fraction

XOe =
Wei XOim !Wf (O=F)s

Weo
(16)

Tuning parameters. The tuning parameters are
the volumetric efficiency constants cvol1, cvol2, cvol3.

Initialization method. The tuning parameters
cvol1, cvol2, and cvol3 are initialized by solving a
linear least-squares problem that minimizes
(Wei 2 Wei,meas)

2 with cvol1, cvol2, and cvol3 as the opti-
mization variables. The variable Wei is the model in
equations (11) and (12) and Wei,meas is calculated
from stationary measurements as Wei,meas = Wc/
(1 2 xegr). Stationary measurements are used as
inputs to the model during the tuning. The result of
the initialization is that the cylinder mass flow
model has a mean absolute relative error of 0.9 per
cent and a maximum absolute relative error of
2.5 per cent. The parameters are then tuned accord-
ing to the method in section 8.1.

4.2 Exhaust manifold temperature

The exhaust manifold temperature model consists
of a model for the cylinder-out temperature and
a model for the heat losses in the exhaust pipes.

4.2.1 Cylinder-out temperature

The cylinder-out temperature Te is modelled in the
same way as in reference [23]. This approach is
based upon ideal-gas Seliger cycle (or limited pres-
sure cycle [1]) calculations that give the cylinder-
out temperature as

Te = hsc P1!1=ga
e r1!ga

c x1=ga!1
p

3 qin
1! xcv

cpa
+

xcv

cV a

" #
+ T1 rga!1

c

" #
(17)

where hsc is a compensation factor for non-ideal
cycles and xcv the ratio of fuel consumed during
constant-volume combustion. The rest of the fuel,
i.e. (1 2 xcv) is used during constant-pressure com-
bustion. The model (17) also includes the following
six components: the pressure ratio over the cylinder
given by

Modelling VGT and EGR diesel engines 965

Proc. IMechE Vol. 225 Part D: J. Automobile Engineering

 at Linkoping University Library on August 30, 2015pid.sagepub.comDownloaded from

201 / 226

Check model properties

Check model for problems

Number of known/unknown/fault variables

Are all signals included in the model

Degree of redundancy

Do the model have underdetermined parts

>> model.Lint();

>> model

Model: Engine model

Type: Symbolic, dynamic

Variables and equations

90 unknown variables

10 known variables

11 fault variables

94 equations, including 14 differential constraints

Degree of redundancy: 4

Model validation finished with 0 errors and 0 warnings.
202 / 226

Plot model structure

>> model.PlotModel();

e1e2e3e4e5e6e7e8e9e10e11e12e13e14e15e16e17e18e19e20e21e22e23e24e25e26e27e28e29e30e31e32e33e34e35e36e37e38e39e40e41e42e43e44e45e46e47e48e49e50e51e52e53e54e55e56e57e58e59e60e61e62e63e64e65e66e67e68e69e70e71e72e73e74e75e76e77e78e79e80e81e82e83e84e85e86e87e88e89e90e91e92e93e94

Engine model

D

I

DI

DI D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

W
_a

f
p_

t
W

_e
s

p_
ic

T
_i

c
W

_i
c

W
_t

h
A

ef
f_

th
W

_w
g

A
ef

f_
w

g
T

_a
f

p_
af

W
_c

T
_c

ou
t

T
_c

p_
c

T
_i

m
cr

p_
im

T
_i

m
W

_e
T

_t
i

T
_e

m
p_

em
dh

_i
s

W
_t

w
g

T
_t

ur
b

T
_t

al
ph

a_
th

om
eg

a_
e

W
_i

g
W

_f
r

T
q_

c
et

a_
c

om
eg

a_
tc

P
S

I_
c

P
I_

c
W

_t
T

q_
t

et
a_

t
P

I_
t

u_
w

g
w

g_
po

s
D

E
LT

A
_t

he
ta

T
_e

T
_a

m
b

p_
am

b
P

S
I_

th
P

I_
w

g
P

S
Ili

_w
g

m
_a

f
m

_c
m

_i
c

T
_f

w
d_

flo
w

_i
c

m
_i

m
m

_e
m

m
_t

P
I_

cn
ol

im
U

_c
P

H
I_

m
od

el
W

_c
co

rr
T

q_
e_

cs
T

q_
e_

cb
T

q_
e_

f
T

q_
e_

p
et

a_
ig

n
W

_i
_p

F
M

E
P

S
_p

B
M

E
P

C
_e

ta
_v

ol
T

_i
n

et
a_

vo
l

W
_a

c
W

_f
c

T
_t

ou
t

T
flo

w
_w

g
dm

dt
_a

f
dT

dt
_a

f
dm

dt
_c

dT
dt

_c
dm

dt
_i

c
dT

dt
_i

c
dm

dt
_i

m
dT

dt
_i

m
dm

dt
_e

m
dT

dt
_e

m
dm

dt
_t

dT
dt

_t
do

m
eg

ad
t_

tc
dw

gd
t_

po
s

fp
_a

f
fw

_a
f

fw
_t

h
fw

_c
fc

_v
ol

fw
_t

fx
_t

h
fy

w
_a

f
fy

p_
im

fy
p_

ic
fy

T
_i

c
y_

p_
ic

y_
p_

im
y_

T
_i

c
y_

W
_a

f
y_

om
eg

a_
e

y_
al

ph
a_

th
y_

u_
w

g
y_

w
fc

y_
T

_a
m

b
y_

p_
am

b

203 / 226

Dulmage-Mendelsohn decomposition

e1e2e3e4e5e6e7e8e9e10e11e12e13e14e15e16e17e18e19e20e21e22e23e24e25e26e27e28e29e30e31e32e33e34e35e36e37e38e39e40e41e42e43e44e45e46e47e48e49e50e51e52e53e54e55e56e57e58e59e60e61e62e63e64e65e66e67e68e69e70e71e72e73e74e75e76e77e78e79e80e81e82e83e84e85e86e87e88e89e90e91e92e93e94

Engine model

D

I

DI

DI D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

W
_a

f
p_

t
W

_e
s

p_
ic

T
_i

c
W

_i
c

W
_t

h
A

ef
f_

th
W

_w
g

A
ef

f_
w

g
T

_a
f

p_
af

W
_c

T
_c

ou
t

T
_c

p_
c

T
_i

m
cr

p_
im

T
_i

m
W

_e
T

_t
i

T
_e

m
p_

em
dh

_i
s

W
_t

w
g

T
_t

ur
b

T
_t

al
ph

a_
th

om
eg

a_
e

W
_i

g
W

_f
r

T
q_

c
et

a_
c

om
eg

a_
tc

P
S

I_
c

P
I_

c
W

_t
T

q_
t

et
a_

t
P

I_
t

u_
w

g
w

g_
po

s
D

E
LT

A
_t

he
ta

T
_e

T
_a

m
b

p_
am

b
P

S
I_

th
P

I_
w

g
P

S
Ili

_w
g

m
_a

f
m

_c
m

_i
c

T
_f

w
d_

flo
w

_i
c

m
_i

m
m

_e
m

m
_t

P
I_

cn
ol

im
U

_c
P

H
I_

m
od

el
W

_c
co

rr
T

q_
e_

cs
T

q_
e_

cb
T

q_
e_

f
T

q_
e_

p
et

a_
ig

n
W

_i
_p

F
M

E
P

S
_p

B
M

E
P

C
_e

ta
_v

ol
T

_i
n

et
a_

vo
l

W
_a

c
W

_f
c

T
_t

ou
t

T
flo

w
_w

g
dm

dt
_a

f
dT

dt
_a

f
dm

dt
_c

dT
dt

_c
dm

dt
_i

c
dT

dt
_i

c
dm

dt
_i

m
dT

dt
_i

m
dm

dt
_e

m
dT

dt
_e

m
dm

dt
_t

dT
dt

_t
do

m
eg

ad
t_

tc
dw

gd
t_

po
s

fp
_a

f
fw

_a
f

fw
_t

h
fw

_c
fc

_v
ol

fw
_t

fx
_t

h
fy

w
_a

f
fy

p_
im

fy
p_

ic
fy

T
_i

c
y_

p_
ic

y_
p_

im
y_

T
_i

c
y_

W
_a

f
y_

om
eg

a_
e

y_
al

ph
a_

th
y_

u_
w

g
y_

w
fc

y_
T

_a
m

b
y_

p_
am

b

>> model.PlotModel();

Tq_e_csTq_e_cbW_igTq_e_fW_freta_ignDELTA_thetaTq_e_pW_i_pFMEPS_pBMEPW_afp_tW_esp_icT_icW_icW_thAeff_thW_wgAeff_wgT_afp_afW_cT_coutT_cp_cT_imcrp_imT_imW_eT_tiT_emp_emdh_isW_twgT_turbT_talpha_thomega_eTq_ceta_comega_tcPSI_cPI_cW_tTq_teta_tPI_tu_wgwg_posT_eT_ambp_ambPSI_thPI_wgPSIli_wgm_afm_cm_icT_fwd_flow_icm_imm_emm_tPI_cnolimU_cPHI_modelW_ccorrC_eta_volT_ineta_volW_acW_fcT_toutTflow_wgdmdt_afdTdt_afdmdt_cdTdt_cdmdt_icdTdt_icdmdt_imdTdt_imdmdt_emdTdt_emdmdt_tdTdt_tdomegadt_tcdwgdt_pos

Variables

e47e48e51e49e52e81e82e50e56e53e54e55e2e75e3e85e5e1e22e42e77e78e11e69e13e18e16e64e6e45e26e57e59e33e7e73e32e38e36e90e89e60e67e84e62e63e76e71e72e70e91e80e58e41e94e4e8e9e14e19e21e23e28e31e39e65e66e61e68e46e44e43e27e92e74e10e12e15e17e20e24e25e29e30e34e35e37e40e83e79e86e87e88e93

E
qu

at
io

ns

Dulmage-Mendelsohn decomposition of model 'Engine model'

D

I

DI

D

I D

I
D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

>> model.PlotDM();

204 / 226

Dulmage-Mendelsohn with equivalence classes

Tq_e_csTq_e_cbW_igTq_e_fW_freta_ignDELTA_thetaTq_e_pW_i_pFMEPS_pBMEPAeff_thalpha_thPSI_thT_imcrdTdt_imAeff_wgu_wgwg_posPI_wgPSIli_wgdwgdt_posdmdt_afdTdt_afdmdt_cdTdt_cdmdt_icT_fwd_flow_icdTdt_icdmdt_imdmdt_emT_tiT_edTdt_emdmdt_tT_turbT_toutdTdt_tomega_eC_eta_volT_ineta_volW_fcTq_cTq_tdomegadt_tcPSI_cPI_cnolimU_cPHI_modeleta_cW_ccorrdh_isW_afp_tW_esp_icT_icW_icW_thW_wgT_afp_afW_cT_coutT_cp_cp_imT_imW_eT_emp_emW_twgT_tomega_tcPI_cW_teta_tPI_tT_ambp_ambm_afm_cm_icm_imm_emm_tW_acTflow_wg

Variables

e47e48e51e49e52e81e82e50e56e53e54e55e4e5e42e90e6e28e30e7e8e9e78e79e80e91e12e14e13e15e17e19e18e20e22e24e23e25e41e27e29e32e34e33e35e58e59e37e39e38e40e74e76e43e44e45e46e89e57e92e60e71e83e84e61e62e63e65e66e67e68e69e72e73e1e2e3e10e11e16e21e26e31e36e64e70e75e77e85e86e87e88e93e94

E
qu

at
io

ns

Dulmage-Mendelsohn decomposition of model 'Engine model'

D

I D

I

D
ID

I
D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I D

I

D
ID

I
D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

D

I

fp_af

fw_af

fw_th

fw_c

fc_vol

fw_t

fx_th

fyw_af
fyp_imfyp_ic
fyT_ic

>> model.PlotDM(’eqclasses’, true, ’fault’, true);
205 / 226

Isolability analysis

>> model.IsolabilityAnalysis();

fp_af fw_af fw_th fw_c fc_vol fw_t fx_th fyw_affyp_imfyp_ic fyT_ic

fp_af

fw_af

fw_th

fw_c

fc_vol

fw_t

fx_th

fyw_af

fyp_im

fyp_ic

fyT_ic

Isolability matrix for 'Engine model'

206 / 226

Isolability analysis – integral causality

>> model.IsolabilityAnalysis(’causality’, ’int’);

fp_af fw_af fw_th fyw_affyp_imfyp_ic fyT_ic fw_c fc_vol fw_t fx_th

fp_af

fw_af

fw_th

fyw_af

fyp_im

fyp_ic

fyT_ic

fw_c

fc_vol

fw_t

fx_th

Isolability matrix for 'Engine model' (integral causality)

207 / 226

Redundancy & testable sub-models in the engine model

MSO – set-minimal redundant set

Redundancy 4

A r = y − ŷ would give 4 residuals

Due to the turbine feedback,
many more possibilities exists

In the model: 4496 MSO sets

all observable
206 with low index (4.6%)

Choose wisely

208 / 226

Test selection

Candidates

Each MSO with n equations, n possible residual generators

4,496 MSO sets: 343,099 residual generators
206 low-index sets: 728 candidates (208 realizable)

Do not need that many to isolate the faults ∼ number of faults

Our strategy

If models were ideal, all equally good

Here: make test selection based on performance on measured data

C-code generation essential for evaluation, Matlas just too slow

Simple approach based on Kullback-Leibler divergences (no details
here, ask me)

Restriction to 4 sensor faults gives 7 selected residuals

209 / 226

FSM & Fault isolation of selected residuals

4 sensor faults

7 residuals

12-14 states

75-79 equations

C-code ready to
run

fyw_af fyp_im fyp_ic fyT_ic

MSO 1650

MSO 4012

MSO 4017

MSO 4018

MSO 4067

MSO 4075

MSO 4478

Fault Signature Matrix

fyw_af fyp_im fyp_ic fyT_ic

fyw_af

fyp_im

fyp_ic

fyT_ic

Fault isolability of 7 selected MSO sets

210 / 226

Test cell data

Volvo production engine

EPA HWFET cycle translated
into load cycle for engine
(rpm/torque)

5 data sets (here):

Fault free
Sensor faults

I Intake pressure
I Air-flow sensor
I Pressure after intercooler
I Temperature after

intercooler
0 2 4 6 8 10 12 14

t [min]

0

10

20

30

40

50

60

70

80

90

100

V
el

oc
ity

 [k
m

/h
]

EPA Highway Fuel Economy Test Cycle (HWFET)

211 / 226

2 4 6 8 10 12
0

2000

4000

rp
m

Engine speed

2 4 6 8 10 12
0

50

100

150

kP
a

Intake manifold pressure

2 4 6 8 10 12
0

0.02

0.04

kg
/s

Air mass flow

2 4 6 8 10 12
0

20

40

%

Throttle position

2 4 6 8 10 12
0

1000

2000

3000

m
g/

s

Injected fuel

2 4 6 8 10 12
-1

0

1

%

Wastegate

2 4 6 8 10 12

t [min]

90

100

110

120
kP

a

Intercooler pressure

2 4 6 8 10 12

t [min]

306

308

310

312

K

Intercooler temperature

2 4 6 8 10 12

t [min]

100.1

100.15

100.2

100.25

kP
a

Ambient pressure

Measurement data, no-fault dataset

212 / 226

Running residual generators

Sampling rate 1 kHz

Data set 12 minutes with 10
measurement signals

Execution takes about 0.5 sec
on this computer (≈ 1400
times real-time)

Simple thresholding based on
false-alarm rate on no-fault
data

0 2 4 6 8 10 12 14

t [min]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
r2 (MSO 4012): Fault Free Data

213 / 226

r1: MSO 1650 (*)

2 4 6 8 10 12
-2

0

2

4
r2: MSO 4012 (*)

2 4 6 8 10 12
-2

0

2

4
r3: MSO 4017 (*)

2 4 6 8 10 12
-1

0

1

2 4 6 8 10 12
-1

0

1
r4: MSO 4018 r5: MSO 4067 (*)

2 4 6 8 10 12

t [min]

-5

0

5

10

2 4 6 8 10 12

t [min]

-1

0

1
r6: MSO 4075

2 4 6 8 10 12

t [min]

-1

0

1
r7: MSO 4478

Residuals, dataset: fyw_af

fyw_af fyp_im fyp_ic fyT_ic

MSO 1650

MSO 4012

MSO 4017

MSO 4018

MSO 4067

MSO 4075

MSO 4478

Fault Signature Matrix

fyw_af fyp_im fyp_ic fyT_ic

fyw_af

fyp_im

fyp_ic

fyT_ic

Fault isolability of 7 selected MSO sets

214 / 226

2 4 6 8 10 12
-1

0

1
r1: MSO 1650

2 4 6 8 10 12
-1

0

1
r2: MSO 4012 r3: MSO 4017 (*)

2 4 6 8 10 12
-2

0

2

4

r4: MSO 4018 (*)

2 4 6 8 10 12
-2

0

2

4

2 4 6 8 10 12

t [min]

-1

0

1
r5: MSO 4067 r6: MSO 4075 (*)

2 4 6 8 10 12

t [min]

-1

0

1

2

2 4 6 8 10 12

t [min]

-1

0

1
r7: MSO 4478

Residuals, dataset: fyp_ic

fyw_af fyp_im fyp_ic fyT_ic

MSO 1650

MSO 4012

MSO 4017

MSO 4018

MSO 4067

MSO 4075

MSO 4478

Fault Signature Matrix

fyw_af fyp_im fyp_ic fyT_ic

fyw_af

fyp_im

fyp_ic

fyT_ic

Fault isolability of 7 selected MSO sets

215 / 226

Fault isolation performance

Performance measure

P(fi diagnosis|fj)

Ideally diagonal

This non-tuned version works
quite well

Some difficulty isolating a fault
in the air-mass flow sensor
(fyw af) from a fault in the
intake manifold pressure sensor
(fyp im)

fyw_af fyp_im fyp_ic fyT_ic

Diagnosed fault

fyw_af

fyp_im

fyp_ic

fyT_ic

In
je

ct
ed

 f
au

lt

0.0

0.0 0.0

0.0 0.0

0.0

0.11.7 2.2

5.0

5.6

14.9

Fault Isolation Performance Matrix

74.6

96.8

97.3

100.0

216 / 226

Quick look back at the design

Automated (or close to)

Modelling (structural and analytical)
Analysis of diagnosability and simulation properties
Test selection
Code generation

The designed residuals are nowhere near optimal

Gives a candidate solution; suitable for an engineer to fine-tune (or
develop more advanced methods)

Important that code is readable, understandable

217 / 226

Concluding remarks

218 / 226

Some take home messages

Structural models

Coarse models that do not need paramerer values etc.

Can be obtained early in the design process

Graph theory; analysis of large models with no numerical issues

Best-case results

Analysis

Find submodels for detector design

Not just y − ŷ , many more possibilities

Diagnosability, Sensor placement, . . .

Residual generation

Structural analysis supports code generation for residual generators

Sequential residual generators based on matchings

Observer based residual generators

219 / 226

Thanks for your attention!

220 / 226

Structural methods for analysis and design of
large-scale diagnosis systems

Erik Frisk and Mattias Krysander
{erik.frisk,mattias.krysander}@liu.se

Dept. Electrical Engineering
Vehicular Systems

Linköping University
Sweden

July 8, 2017

221 / 226

Some publications on structural analysis from our group

Overdetermined equations, MSO, MTES

Mattias Krysander, Jan Åslund, and Mattias Nyberg.
An efficient algorithm for finding minimal over-constrained
sub-systems for model-based diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, 38(1), 2008.

Mattias Krysander, Jan Åslund, and Erik Frisk.
A structural algorithm for finding testable sub-models and multiple
fault isolability analysis.
21st International Workshop on Principles of Diagnosis (DX-10),
Portland, Oregon, USA, 2010.

222 / 226

Some publications on structural analysis from our group

Sensor placement and diagnosability analysis

Mattias Krysander and Erik Frisk.
Sensor placement for fault diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, 38(6):1398–1410, 2008.

Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander, Belarmino
Pulido, and Gautam Biswas.
Diagnosability analysis considering causal interpretations for
differential constraints.
IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, 42(5):1216–1229, September 2012.

223 / 226

Publications on Structural Analysis from our group

Residual generation supported by structural analysis

Erik Frisk, Mattias Krysander, and Daniel Jung.
A Toolbox for Analysis and Design of Model Based Diagnosis Systems
for Large Scale Models.
IFAC World Congress, 2017.

Erik Frisk, Mattias Krysander, and Daniel Jung.
Analysis and Design of Diagnosis Systems Based on the Structural
Differential Index.
IFAC World Congress, 2017.

224 / 226

Some publications on structural analysis from our group

Residual generation supported by structural analysis

Carl Svärd and Mattias Nyberg. Residual generators for fault diagnosis
using computation sequences with mixed causality applied to
automotive systems.
IEEE Transactions on Systems, Man, and Cybernetics – Part A:
Systems and Humans, 40(6):1310–1328, 2010.

Carl Svärd, Mattias Nyberg, and Erik Frisk.
Realizability constrained selection of residual generators for fault
diagnosis with an automotive engine application.
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
43(6):1354–1369, 2013.

225 / 226

Publications on Structural Analysis from our group

Application studies

Dilek Dustegör, Erik Frisk, Vincent Coquempot, Mattias Krysander,
and Marcel Staroswiecki.
Structural analysis of fault isolability in the DAMADICS benchmark.
Control Engineering Practice, 14(6):597–608, 2006.

Carl Svärd and Mattias Nyberg.
Automated design of an FDI-system for the wind turbine benchmark.
Journal of Control Science and Engineering, 2012, 2012.

Carl Svärd, Mattias Nyberg, Erik Frisk, and Mattias Krysander.
Automotive engine FDI by application of an automated model-based
and data-driven design methodology.
Control Engineering Practice, 21(4):455–472, 2013.

226 / 226

	Introduction
	Decision Making

	Structural models and basic definitions
	Diagnosis system design
	Residual generation
	Residual generation examples

	Diagnosability analysis
	Differential index, causality and diagnosability analysis

	Sensor placement analysis
	Analytical vs structural properties
	Use-case: an automotive engine
	Problem definition
	Modelling
	Isolability analysis and test selection
	Evaluation on experimental data

	Concluding remarks

