Structural methods for analysis and design of large-scale diagnosis systems

> Erik Frisk and Mattias Krysander {erik.frisk,mattias.krysander}@liu.se

> > Dept. Electrical Engineering Vehicular Systems Linköping University Sweden

> > > July 8, 2017

1 / 226

- Introduction -

Who are we?

Erik Frisk erik.frisk@liu.se

Mattias Krysander mattias.krysander@liu.se

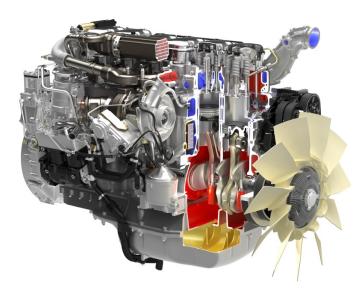
Department of Electrical Engineering Linköping University Sweden

Outline

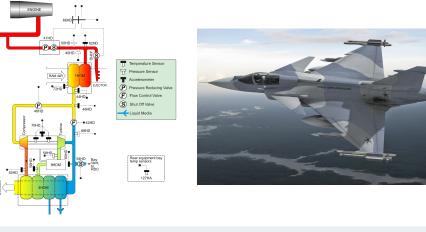
- Introduction
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

3 / 226

Supervision of an automotive engine



Secondary Environmental Cooling System in Gripen



- Model in Modelica
- Uses standard component libraries
- 1,000-10,000 equations

5 / 226

Analysis and design of large-scale diagnosis systems

Definition (Large scale)

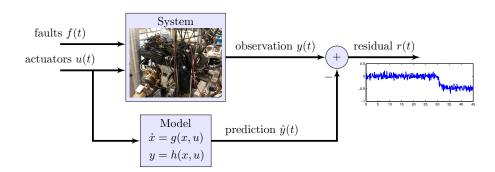
Systems and models that can not be managed by hand; that need computational support.

We do not mean: distributed diagnosis, big data, machine learning, classifiers, and other exciting fields

Scope of tutorial

- Describe techniques suitable for large scale, non-linear, models based on structural analysis
- Support different stages of diagnosis systems design
- Provide a theoretical foundation

The basic idea



Real applications not that simple

- Models are complex, non-linear, includes lookup-tables,
- Fault isolation, not only fault detection
- Models are uncertain, which, by definition is not modeled; merging models with data?

$\dot{x} = Ax + Bu$	$\dot{x} = g(x, u)$
y = Cx	y = h(x)

There are many published techniques, elegant and powerful, to address fault diagnosis problems based on, e.g., state-space models like above.

They might involve, more or less, involved mathematics and formula manipulation.

This tutorial

This tutorial covers techniques that are suitable for large systems where involved hand-manipulation of equations is not an option

9 / 226

Objectives

- Understand fundamental methods in structural analysis for fault diagnosis
- Understand possibilities and limitations of the techniques
- Introduce sample computational tools
- Tutorial not intended as a course in the fundamentals of structural analysis, our objective has been to make the presentation accessible even without a background in structural analysis
- Does not include all approaches for structural analysis in fault diagnosis, e.g., bond graphs and directed graph representations are not covered.

Outline

- Formally introduce structural models and fundamental diagnosis definitions
- Oberive algorithms for design of residual generators
 - Introduction of fundamental graph-theoretical tools, e.g., Dulmage-Mendelsohn decomposition of bi-partite graphs
 - Finding all minimal submodels with redundancy
 - Generating residuals based on submodels with redundancy
- Oerive algorithms for analysis of models and diagnosis systems
 - Determination of fault isolability properties of a model
 - Determination of fault isolability properties of a diagnosis system
 - Finding sensor locations for fault diagnosis

10/226

Software

Fault Diagnosis Toolbox for Matlab

Some key features

- Structural analysis of large-scale DAE models
- Analysis
 - Find submodels with redundancy (MSO/MTES)
 - Diagnosability analysis of models and diagnosis systems
 - Sensor placement analysis
- Code generation for residual generators
 - based on matchings (ARRs)
 - based on observers

Fault Diagnosis Toolbox

Fault Diagnosis Toolbox is a Matlab toolbox for analysis and design of fault diagnosis systems for dynamic systems,

primarily described by differential-algebraic equations. Key features of the toolbox are extensive support for structural

analysis of large-scale dynamic models, fault isolability

Erik Frisk Associate professor at the Department of Electrical Engineering, Linköping University.

Linköping, SwedenEmail

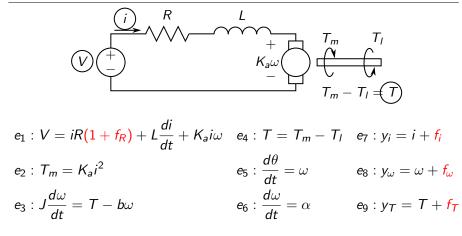
analysis, sensor placement analysis, and code generation in C/C++ and Matlab. For a quick introduction, see the use case where an industrial size example, an automotive engine, is analyzed, C-code for

residual generators is generated, and the resulting diagnosis system is evaluated on test-cell measurements from our engine laboratory.

faultdiagnosistoolbox.github.io

13 / 226

Example: Ideal electric motor model



Model summary (9 equations)

Known variables(4): V, y_i, y_ω, y_T Unknown variables(7): $i, \theta, \omega, \alpha, T, T_m, T_l, (i, \omega, \theta \text{ dynamic})$ Fault variables(4): f_R, f_i, f_ω, f_T

Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators

x = g(u)	$r_1 = y_1 - g(u)$
$y_1 = x$	$r_2 = y_2 - g(u)$
$y_2 = x$	$r_3 = y_2 - y_1$
$y_3 = x$	$r_4 = y_3 - g(u)$
	$r_5 = y_3 - y_1$
	$r_6 = y_3 - y_2$

- Number of possibilities grows exponentially (here ⁿ₂) minimal combinations)
- Not just $y \hat{y}$
- Is this illustration relevant for more general cases?

14 / 226

Structural model

Structural model
A structural model only models that variables are related!
Example relating variables: V, i, ω
$e_1: V = iR(1+f_R) + Lrac{di}{dt} + K_a i \omega$

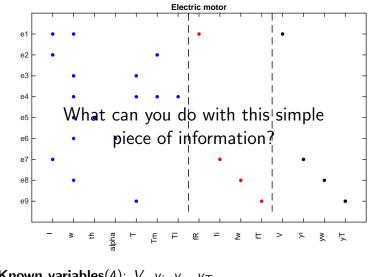
	Unknown variables														
	i	θ	ω	α	Т	T_m	T_{I}	f_R	fi	f_{ω}	f_T	V	Уi	y_{ω}	Ут
e_1	X		Х					Х				Х			

• Coarse model description, no parameters or analytical expressions

- Can be obtained early in design process with little engineering effort
- Large-scale model analysis possible using graph theoretical tools
- Very useful!

Main drawback: Only best case results!

Structural model of the electric motor



- Known variables(4): V, y_i, y_{ω}, y_T
- Unknown variables(7): *i*, θ , ω , α , *T*, *T_m*, *T_I*, (*i*, ω , θ dynamic)
- Fault variables(4): f_R , f_i , f_{ω} , f_T

Sensor placement - which sensors to add?

Q: Which sensors should we add to achieve full isolability?

Choose among $\{i, \theta, \omega, \alpha, T, T_m, T_l\}$. Minimal sets of sensors that achieves full isolability are

$$S_1 = \{i\}$$

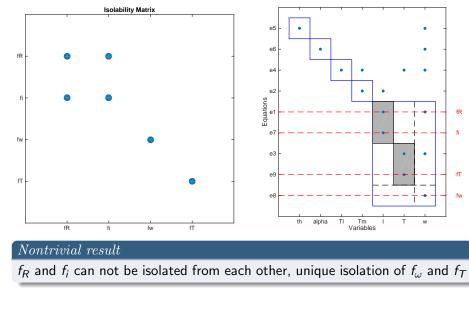
$$S_2 = \{T_m\}$$

$$S_3 = \{T_l\}$$

Let us add S_1 , a second sensor measuring *i* (one current sensor already used),

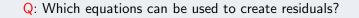
$$y_{i,2} = i$$

Structural isolability analysis of model



18/226

Create residuals to detect and isolate faults



$$e_{1}: V = iR(1 + f_{R}) + L\frac{di}{dt} + K_{a}i\omega \quad e_{4}: T = T_{m} - T_{I} \quad e_{7}: y_{i} = i + f_{i}$$

$$e_{2}: T_{m} = K_{a}i^{2} \qquad e_{5}: \frac{d\theta}{dt} = \omega \qquad e_{8}: y_{\omega} = \omega + f_{\omega}$$

$$e_{3}: J\frac{d\omega}{dt} = T - b\omega \qquad e_{6}: \frac{d\omega}{dt} = \alpha \qquad e_{9}: y_{T} = T + f_{T}$$

$$e_{10}: y_{i,2} = i$$

Example, equations $\{e_3, e_8, e_9\} = \{J\dot{\omega} = T - b\omega, y_{\omega} = \omega, y_T = T\}$ has redundancy! 3 equations, 2 unknown variables (ω and T)

$$r = J\dot{y}_{\omega} + by_{\omega} - y_T$$

Structural redundancy

Determine redundancy by counting equations and unknown variables!

Create residuals to detect and isolate faults

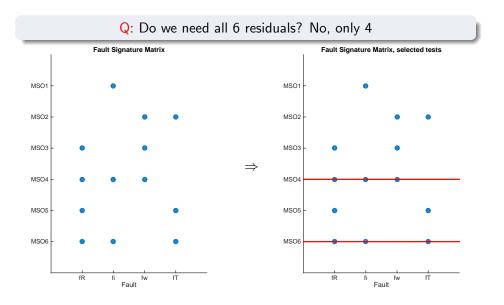
Q: Which equations can be used to create residuals?

Analysis shows that there are 6 minimal sets of equations with redundancy, called MSO sets. Three are

$$\begin{split} \mathcal{M}_1 &= \{y_i = i, y_{i,2} = i\} & \Rightarrow r_1 = y_i - y_{i,2} \\ \mathcal{M}_2 &= \{y_\omega = \omega, y_T = T, J\dot{\omega} = T - b\omega\} & \Rightarrow r_2 = y_T - J\dot{y}_\omega - b\omega \\ \mathcal{M}_3 &= \{V = L\frac{d}{dt}i + iR + K_a i\omega, & \Rightarrow r_3 = V - L\dot{y}_i + y_iR + K_a y_i y_\omega \\ & y_\omega = \omega, y_i = i\} \\ \mathcal{M}_4 &= \dots \\ \mathcal{M}_5 &= \dots \\ \mathcal{M}_6 &= \dots \end{split}$$

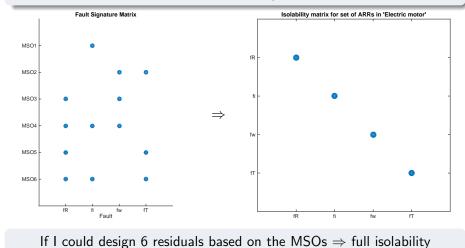
21 / 226

Test selection



Fault signature matrix and isolability for MSOs

Q: Which isolability is given by the 6 MSOs/candidate residual generators?

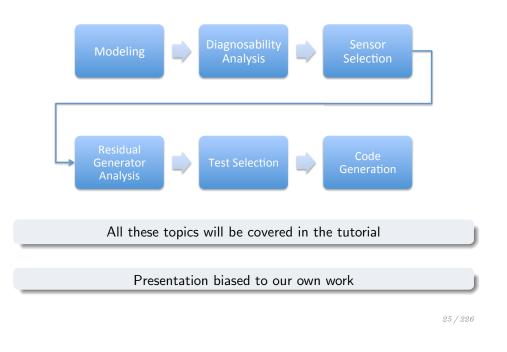


22 / 226

Code generation supported by structural analysis

Q: Can we automatically gener	rate code for residual generator?
For example, MSO \mathcal{M}_2	Automatic generation of code
$\{y_{\omega}=\omega, y_{T}=T, J\dot{\omega}=T-b\omega\}$	% Initialize state variables w = state.w;
has redundancy and it is possible to generate code for residual generator, equivalent to	% Residual generator body T = yT; % e9 w = yw; % e8
$r_2 = J \dot{y}_\omega + b y_\omega - y_T$	<pre>dw = ApproxDiff(w,state.w,Ts); % e11 r2 = J*dw+bw-T; % e3</pre>

Design process aided by structural analysis



Differential index

Definition

From simulation of differential-algebraic equations (there is a formal definition): "*how far from an ODE is a set of equations*"?

• Index 0: all variables are dynamic

 $\dot{x} = g(x)$

Index 1: dynamic variables (x₁) and algebraic variables (x₂)

$$\dot{x}_1 = g_1(x_1, x_2)$$

 $0 = g_2(x_1, x_2), \quad \partial g_2/\partial x_2$ full rank

• Index > 1: dynamic variables (x_1) and algebraic variables (x_2)

$$\dot{x}_1 = g_1(x_1, x_2)$$
$$0 = g_2(x_1)$$

Some history

- *50's* In mathematics, graph theory. A. Dulmage and N. Mendelsohn, "*Covering of bi-partite graphs*"
- 60's-70's Structure analysis and decomposition of large systems, e.g., C.T. Lin, "*Structural controllability*" (AC-1974)
 - 90's- Structural analysis for fault diagnosis, first introduced by M. Staroswiecki and P. Declerck. After that, thriving research area in AI and Automatic Control research communities.

26 / 226

Differential index and diagnosis

Why is this relevant here? models are often state-space/Simulink models!

$$\dot{x} = g(x, u)$$
$$y = h(x, u)$$

ARRs, Possible conflicts, MSO sets, ...: submodels!

 $\dot{x}_1 = g(x_1, x_2, u)$ $y_1 = h_1(x_1, x_2, u)$

Appears naturally in a diagnosis context!

I will return to this topic briefly in diagnosability analysis and residual generation but do not have the time to get detailed.

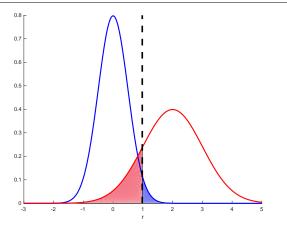
Take home message

- Low index problems (0/1):
 - Easy to simulate (basic simulink models are always low-index)
 - State-space techniques directly applicable, e.g., state-observers
- High-index problems (> 1):
 - Hard to simulate accurately, difficult to diagnose (often very)
 - Corresponds to differentiating, numerically, signals
 - Observer techniques not directly applicable

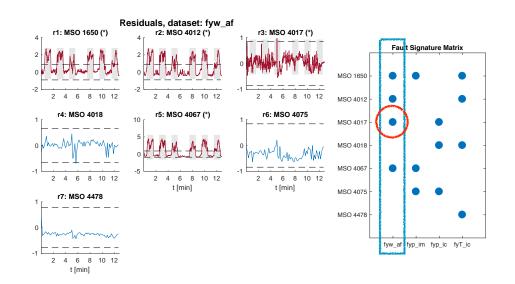
— Decision Making —

29 / 226

Decision making under noise



- Thresholds often set based on (a small) false alarm probability
- Residual over threshold \Rightarrow fault with good confidence
- Residual under threshold \Rightarrow ?



A word on fault isolation and exoneration

	f.	f_2	fa	f.			f_1	f_2	f ₃	f ₄	
			-			f_1	1	0	0	0	
\mathcal{M}_1					\Rightarrow			1			
\mathcal{M}_2					,	.2 fa	0	0	1	0	
\mathcal{M}_3	1	1	0	1		13	0	0	T	0	
0	I					t ₄	0	0	0	T	

Q: Why is not the isolability matrixdiagonal when all columns in FSM are different?

A: We do not assume exoneration (= ideal residual response), exoneration is a term from consistency based diagnosis, here isolation by column matching

CBD diagnosis	
$r_1 > J \Rightarrow f_3 \text{ or } f_4 \qquad \Rightarrow$ $r_2 > J \Rightarrow f_1 \text{ or } f_3$	Minimal consistency based diagnoses with no exoneration assumption: $\mathcal{D}_1 = \{f_3\}, \ \mathcal{D}_2 = \{f_1, f_4\}$

33 / 226

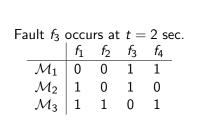
Consistency based fault isolation or column matching

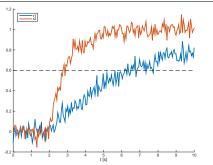
- Column matching common in FDI litterature
 - bad diagnoses in case of missed detections
 - need to care about order and timing of alarms
 - $\hfill \hfill \hfill$
- With a consistency based approach
 - none of the above
 - strong theoretical background in AI

A starting point

Cordier, M-O., et al. "*Conflicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives*" IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34.5 (2004): 2163-2177.

Fault isolation and exoneration





Diagnosis result	
No exoneration assumption	With exoneration assumption
0 – 2.5 : No fault	0 – 2.5 : No fault
$2.5-6:f_3 \ { m or} \ f_4$	2.5-6: Unknown
$6-:f_3$	$6-:f_3$

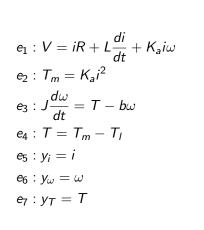
Basic definitions —

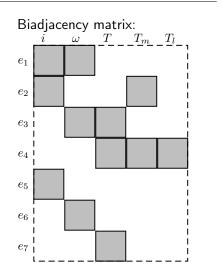
Outline

- Introduction
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

37/226

A structural model - the nominal model





A structural model - the nominal model



$$e_{1}: V = iR + L\frac{di}{dt} + K_{a}i\omega$$

$$e_{2}: T_{m} = K_{a}i^{2}$$

$$e_{3}: J\frac{d\omega}{dt} = T - b\omega$$

$$e_{4}: T = T_{m} - T_{l}$$

$$e_{5}: y_{i} = i$$

$$e_6: y_\omega = \omega$$

 $e_7 : y_T = T$

Variables types:

- Unknown variables: i, ω, T, T_m, T_l
- Known variables: sensor values, known input signals: V, y_i, y_ω, y_T
- Known parameter values: R, L, K_a, J, b

Common mistakes:

i

- Consider i as a known variable since it is measured.
- Consider a variable that can be estimated using the model, i.e., T_m , to be a known variable.

38 / 226

A structural model with fault information

Fault influence can be included in the model

- by fault signals
- by equation assumptions/supports

$$e_{1}: V = i(R + f_{R}) + L\frac{di}{dt} + K_{a}i\omega \qquad f_{R} \rightarrow e_{1}$$

$$e_{2}: T_{m} = K_{a}i^{2} \qquad e_{2}$$

$$e_{3}: J\frac{d\omega}{dt} = T - (b + f_{b})\omega \qquad f_{b} \rightarrow e_{3}$$

$$e_{4}: T = T_{m} - T_{1} \qquad e_{4}$$

$$e_{5}: y_{i} = i + f_{i} \qquad f_{i} \rightarrow e_{5}$$

$$e_{6}: y_{\omega} = \omega + f_{\omega} \qquad f_{\omega} \rightarrow e_{6}$$

$$e_{7}: y_{T} = T + f_{T} \qquad f_{T} \rightarrow e_{7}$$

Structural representation of dynamic systems

Structural representation of dynamic systems can be done as follows:

- **②** Consider x and \dot{x} to be structurally the same variable.
- **②** Consider x and \dot{x} to be separate variables.

$$\frac{dx_1}{dt} = g_1(x_1, x_2, z, f) \qquad x_1' = g_1(x_1, x_2, z, f) \\
0 = g_2(x_1, x_2, z, f) \Rightarrow \qquad 0 = g_2(x_1, x_2, z, f) \\
\frac{dx_1}{dt} = x_1'$$

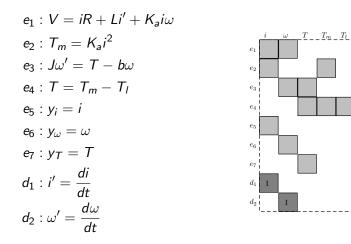
In this case dynamics is usually separated from the algebraic part by introducing a variable representing the derivatives

$$x' = \frac{dx}{dt}$$

• Choice depend on purpose and objective.

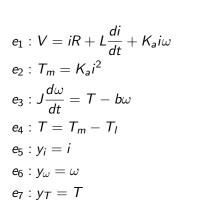
41/226

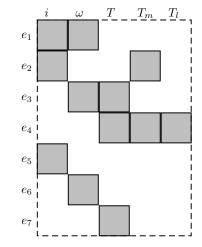
Dynamics - distinguish derivatives



- Add differential constraints
- Used for computing sequential residual generators
- Differential/integral causality and index properties

Dynamics - not distinguish derivatives





Compact description

42/226

Structural properties interesting for diagnosis

Properties interesting both for residual generation, fault detectability and isolability analysis.

Let $M = \{e_1, e_2, \ldots, e_n\}$ be a set of equations.

Basic questions answered by structural analysis

- O Can a residual generator be derived from M ? or equivalently can the consistency of M be checked?
- Which faults are expected to influence the residual?

Structural results give generic answers. We will come back to this later.

Is it possible to compute a residual from these equations?

$$e_{3}: T = J\frac{d\omega}{dt} + b\omega$$

$$e_{5}: i = y_{i}$$

$$e_{6}: \omega = y_{\omega}$$

$$e_{1}: V - iR - L\frac{di}{dt} - K_{a}i\omega = 0$$

$$\begin{vmatrix} T & i & \omega \\ e_{3} & X & X \\ e_{5} & X \\ e_{6} & X \\ e_{1} & X & X \end{vmatrix}$$

Yes! The values of ω, i, and T can be computed using equations e₆, e₅, and e₃ respectively. Then there is an additional equation e₁ a so-called *redundant equation* that can be used for residual generation

$$V - y_i R + L \frac{dy_i}{dt} - K_a y_i y_\omega = 0$$

Compute the residual

$$r = V - y_i R + L \frac{dy_i}{dt} - K_a y_i y_\omega$$

and compare if it is close to 0.

45 / 226

Structural analysis provides the same information

Model with fault:

$$e_{3}: T = J\frac{d\omega}{dt} + (b + f_{b})\omega \qquad \qquad \begin{array}{c|c} T & i & \omega \\ \hline e_{3}: i = y_{i} - f_{i} & e_{3} & X & X & f_{b} \\ e_{6}: \omega = y_{\omega} - f_{\omega} & e_{5} & X & f_{i} \\ e_{1}: V - i(R + f_{R}) - L\frac{di}{dt} - K_{a}i\omega = 0 & e_{1} & X & X & f_{R} \end{array}$$

• Structural analysis provides the following useful diagnosis information:

- residual from $\{\textit{e}_{1},\textit{e}_{5},\textit{e}_{6}\}$

• sensitive to
$$\{f_i, f_\omega, f_R\}$$

Let's formalize the structural reasoning!

Fault sensitivity of the residual?

• Model with fault:

$$e_{3}: T = J \frac{d\omega}{dt} + (b + f_{b})\omega \qquad \qquad T \quad i \quad \omega$$

$$e_{5}: i = y_{i} - f_{i} \qquad \qquad e_{5} \qquad X \qquad f_{b}$$

$$e_{6}: \omega = y_{\omega} - f_{\omega} \qquad \qquad e_{6} \qquad X \qquad f_{i}$$

$$e_{1}: V - i(R + f_{R}) - L \frac{di}{dt} - K_{a}i\omega = 0 \qquad e_{1} \qquad X \qquad X \qquad f_{R}$$

• Which faults could case the residual to be non-zero?

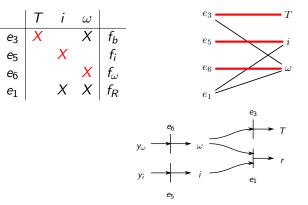
$$r = V - y_i R + L \frac{dy_i}{dt} - K_a y_i y_\omega =$$
$$= y_i f_R + f_i (K_a f_\omega - R - y_w - f_R) - L \frac{df_i}{dt} - K_a y_i f_\omega$$

- Sensitive to all faults except f_b .
- Not surprising since e_3 was not used in the derivation of the residual!

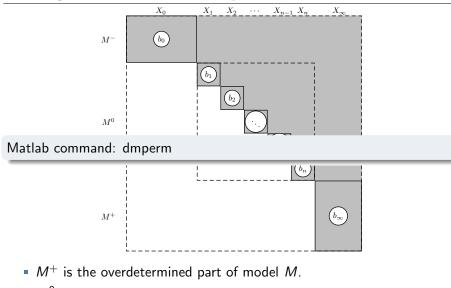
46 / 226

Matching

- A *matching* in a bipartite graph is a pairing of nodes in the two sets.
- Formally: set of edges with no common nodes.
- A matching with maximum cardinality is a *maximal matching*.
- Diagnosis related interpretation: which variable is computed from which equation



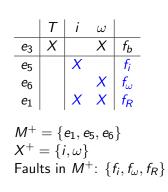
Dulmage-Mendelsohn decomposition

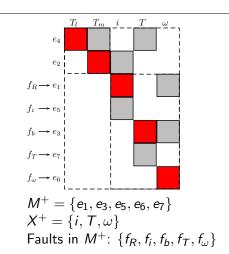


- M^0 is the exactly determined part of model M.
- M^- is the underdetermined part of model M.

49 / 226

Detectable faults





The overdetermined part contains all redundancy.

Structurally detectable fault

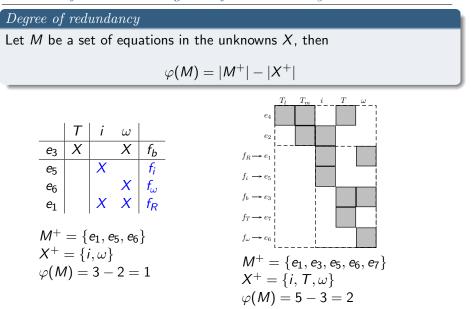
Fault f is structurally detectable in M if f enters in M^+

Dulmage-Mendelsohn Decomposition

- Find a maximal matching
- Rearrange rows and columns
- Identify the under-, just-, and over-determined parts by backtracking
- Identify the block decomposition of the just-determined part. Erik will explain later.
- Oulmage-Mendelsohn decomposition can be done very fast for large models.

50 / 226

Basic definitions - degree of redundancy



Structurally Overdetermined (SO)

M is SO if $\varphi(M) > 0$

Minimally Structurally Overdetermined (MSO)

An SO set M is an MSO if no proper subset of M is SO.

Proper Structurally Overdetermined (PSO)

An SO set *M* is PSO if $\varphi(E) < \varphi(M)$ for all proper subsets $E \subset M$

Examples - electrical motor

Relation between overdetermined part and SO, MSO, and PSO sets.

	T	i	ω	
e ₃	X		Χ	f _b
<i>e</i> 5		X		fi
e_6			X	f_{ω}
e_1		X	X	f _R

• $M = \{e_1, e_3, e_5, e_6\}$ is SO since

$$\varphi(M) = |M^+| - |X^+| = 3 - 2 = 1 > 0$$

A residual can be computed but it is *not sensitive to all faults in M*.

- $M^+ = \{e_1, e_5, e_6\}$ is SO but also
 - PSO since the redundancy decreases if any equation is removed
 - MSO since there is no SO subset.

MSO and PSO sets seem to be interesting!

53 / 226

Example - sensor redundancy

	$\{e_1, e_2\}: r_1 = y_1 - y_2$
$e_1 : y_1 = x$	$\{e_1, e_3\}$: $r_2 = y_1 - y_3$
$e_2: y_2 = x$	$\{e_2, e_3\}: r_3 = y_2 - y_3$
$e_3: y_3 = x$	$\{e_1, e_2, e_3\}: r_4 = r_1^2 + r_2^2$

- $\{e_1, e_2, e_3\}$ is Structurally Overdetermined (SO) but *not* MSO since
- $\{e_1, e_2\}$, $\{e_1, e_3\}$, $\{e_2, e_3\}$ all are MSO:s
- All above equation sets are PSO since degree of redundancy decreases if an element is removed.

Properties

- M PSO set \Leftrightarrow residual from M sensitive to all faults in M
- MSO sets are PSO sets with structural redundancy 1.
- MSO sets are sensitive to few faults, which is good for fault isolation.
 ⇒ MSO sets are candidates for residual generation

54 / 226

Examples - electrical motor, MSO sets and tests

$e_1: V = iR + Lrac{di}{dt} + K_a i \omega$
$e_2: T_m = K_a i^2$
$e_3: Jrac{d\omega}{dt} = T - b\omega$
$e_4: T = T_m - T_l$
$e_5: y_i = i$
$e_6: y_\omega = \omega$
$e_7: y_T = T$

MSO sets and possible tests:

$$e_{6}:\hat{\omega} = y_{\omega}$$

$$e_{1}:\frac{d\hat{i}}{dt} = \frac{1}{L}(V - \hat{i}R - K_{a}\hat{i}\hat{\omega})$$

$$e_{5}:r_{1} = y_{i} - \hat{i}$$

$e_6: r_2 = y_\omega - \hat{\omega}$
$e_7: \hat{T} = y_T$
$e_3: rac{d\hat{\omega}}{dt} = rac{1}{J}(\hat{T} - b\hat{\omega})$
$e_1: \frac{d\hat{i}}{dt} = \frac{1}{L}(V - \hat{i}R - K_a\hat{i}\hat{\omega})$
$e_5:r_3=y_i-\hat{i}$

 e_7 : $\hat{T} = v_T$

 $e_3: \frac{d\hat{\omega}}{dt} = \frac{1}{4}(\hat{T} - b\hat{\omega})$

	f_R	f_b	fi	f_{ω}	f_T	
r_1	Х		Х	Х		
r_2		Х		Х	Х	
r ₃	x	Х	Х		Х	56/

Structural properties:

Properties

- M PSO set \Leftrightarrow residual from M sensitive to all faults in M
- MSO sets are PSO sets with structural redundancy 1.
- MSO sets are sensitive to few faults which is good for fault isolation.
 ⇒ MSO sets are candidates for residual generation

MSO and PSO models characterize model redundancy, but faults are not taken into account.

Next we will take faults into account.

To illustrate the ideas I will consider the following small state-space model with 3 states, 3 measurements, and 5 faults:

Т

			x_1	x_2	x_3
-	$\dot{x}_1 = -x_1 + u + f_1$	e_1	X		
<i>e</i> ₂ :	$\dot{x}_2 = x_1 - 2x_2 + x_3 + f_2$	e_2	X	X	X
<i>e</i> 3 :	$\dot{x}_3 = x_2 - 3x_3$	2		X	
<i>e</i> ₄ :	$y_1 = x_2 + f_3$	e_3			21
<i>e</i> 5 :	$y_2 = x_2 + f_4$	e_4		X	
<i>e</i> ₆ :	$y_3 = x_3 + f_5$	e_5		X	
-0 -		e_6			X

 x_i represent the unknown variables, u and y_i the known variables, and f_i the faults to be monitored.

57 / 226

MSO sets

There are 8 MSO sets in the model

	Equations	Faults
MSO_1	$\{e_3, e_5, e_6\}$	$\{f_4, f_5\}$
MSO_2	$\{e_3, e_4, e_6\}$	$\{f_3, f_5\}$
MSO_3	$\{e_4, e_5\}$	$\{f_3, f_4\}$
MSO_4	$\{e_1, e_2, e_3, e_6\}$	$\{f_1, f_2, f_5\}$
MSO_5	$\{e_1, e_2, e_3, e_5\}$	$\{f_1, f_2, f_4\}$
MSO_6	$\{e_1, e_2, e_3, e_4\}$	$\{f_1, f_2, f_3\}$
MSO_7	$\{e_1, e_2, e_5, e_6\}$	$\{f_1, f_2, f_4, f_5\}$
MSO ₈	$\{e_1, e_2, e_4, e_6\}$	$\{f_1, f_2, f_3, f_5\}$

In the definitions of redundancy, SO, MSO, and PSO we only considered equations and unknown variables.

But who cares about equations?

We are mainly interested in faults!

First observation: All MSO sets are not equally "good"

Tests sensitive to few faults give more precise isolation. | Equations | Faults

	Lquations	Tauns
MSO_1	$\{e_3, e_5, e_6\}$	$\{f_4, f_5\}$
MSO_2	$\{e_3, e_4, e_6\}$	$\{f_3, f_5\}$
MSO_3	$\{e_4, e_5\}$	$\{f_3, f_4\}$
MSO_4	$\{e_1, e_2, e_3, e_6\}$	$\{f_1, f_2, f_5\}$
MSO_5	$\{e_1, e_2, e_3, e_5\}$	$\{f_1, f_2, f_4\}$
MSO_6	$\{e_1, e_2, e_3, e_4\}$	$\{f_1, f_2, f_3\}$
MSO_7	$\{e_1, e_2, e_5, e_6\}$	$\{f_1, f_2, f_4, f_5\}$
MSO ₈	$\{e_1, e_2, e_4, e_6\}$	$\{f_1, f_2, f_3, f_5\}$

 $\begin{aligned} \mathsf{Faults}(MSO_1), \mathsf{Faults}(MSO_4), \mathsf{Faults}(MSO_5) \subset \mathsf{Faults}(MSO_7) \\ \mathsf{Faults}(MSO_2), \mathsf{Faults}(MSO_4), \mathsf{Faults}(MSO_6) \subset \mathsf{Faults}(MSO_8) \end{aligned}$

Conclusion 1

MSO₇ and MSO₈ are not minimal with respect to fault sensitivity

A residual generator based on the equations in MSO_7 will be sensitive to the faults:

$$Faults(\{e_1, e_2, e_5, e_6\}) = \{f_1, f_2, f_4, f_5\}$$

Adding equation e_3 does not change the fault sensitivity:

$$Faults(\underbrace{\{e_1, e_2, e_3, e_5, e_6\}}_{\text{PSO set with redundancy } 2}) = \{f_1, f_2, f_4, f_5\}$$

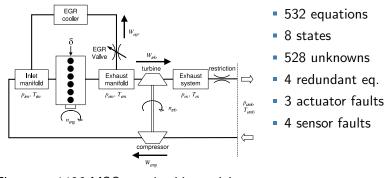
Conclusion 2

There exists a PSO set larger than MSO_7 with the same fault sensitivity.

Third observation: There are too many MSO sets

Consider the following model of a Scania truck engine

Original model:



There are 1436 MSO sets in this model.

Conclusion <u>3</u>

There are too many MSO sets to handle in practice and we have to find a way to sort out which sets to use for residual generator design.

61/226

Questions

	Equations	Faults
MSO_1	$\{e_3, e_5, e_6\}$	$\{f_4, f_5\}$
MSO_2	$\{e_3, e_4, e_6\}$	$\{f_3, f_5\}$
MSO_3	$\{e_4, e_5\}$	$\{f_3, f_4\}$
MSO_4	$\{e_1, e_2, e_3, e_6\}$	$\{f_1, f_2, f_5\}$
MSO_5	$\{e_1, e_2, e_3, e_5\}$	$\{f_1, f_2, f_4\}$
MSO_6	$\{e_1, e_2, e_3, e_4\}$	$\{f_1, f_2, f_3\}$
MSO ₇	$\{e_1, e_2, e_5, e_6\}$	$\{f_1, f_2, f_4, f_5\}$
MSO ₈	$\{e_1, e_2, e_4, e_6\}$	$\{f_1, f_2, f_3, f_5\}$

What distinguish the first 6 MSO sets?

Questions

	Equations	Faults
MSO_1	$\{e_3, e_5, e_6\}$	$\{f_4, f_5\}$
MSO_2	$\{e_3, e_4, e_6\}$	$\{f_3, f_5\}$
MSO_3	$\{e_4, e_5\}$	$\{f_3, f_4\}$
MSO_4	$\{e_1, e_2, e_3, e_6\}$	$\{f_1, f_2, f_5\}$
MSO_5	$\{e_1, e_2, e_3, e_5\}$	$\{f_1, f_2, f_4\}$
MSO_6	$\{e_1, e_2, e_3, e_4\}$	$\{f_1, f_2, f_3\}$
MSO ₇	$\{e_1, e_2, e_5, e_6\}$	$\{f_1, f_2, f_4, f_5\}$
MSO ₈	$\{e_1, e_2, e_4, e_6\}$	$\{f_1, f_2, f_3, f_5\}$

Is it always MSO sets we are looking for?

- Which fault sensitivities are possible?
- For a given possible fault sensitivity, which sub-model is the best to use?

Answers

Let F(M) denote the set of faults included in M.

Definition (Test Support)

Given a model \mathcal{M} and a set of faults \mathcal{F} , a non-empty subset of faults $\zeta \subseteq \mathcal{F}$ is a test support if there exists a PSO set $M \subseteq \mathcal{M}$ such that $F(M) = \zeta$.

Definition (Test Equation Support)

An equation set M is a Test Equation Support (TES) if

- M is a PSO set,
- \bigcirc $F(M) \neq \emptyset$, and
- 𝗿 for any $M' \supseteq M$ where M' is a PSO set it holds that $F(M') \supseteq F(M)$.

 MSO_7 is not a TES since

$$\textit{Faults}(\{e_1, e_2, e_5, e_6\}) = \textit{Faults}(\{e_1, e_2, e_3, e_5, e_6\}) = \{f_1, f_2, f_4, f_5\}$$

66 / 226

65 / 226

Answers

Definition (Minimal Test Support)

Given a model, a test support is a minimal test support (MTS) if no proper subset is a test support.

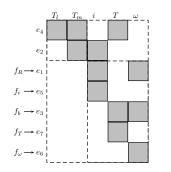
Definition (Minimal Test Equation Support)

A TES M is a minimal TES (MTES) if there exists no subset of M that is a TES.

Example

	Equations	Faults
MSO_1	$\{e_3, e_5, e_6\}$	$\{f_4, f_5\}$
MSO_2	$\{e_3, e_4, e_6\}$	$\{f_3, f_5\}$
MSO_3	$\{e_4, e_5\}$	$\{f_3, f_4\}$
MSO_4	$\{e_1, e_2, e_3, e_6\}$	$\{f_1, f_2, f_5\}$
MSO_5	$\{e_1, e_2, e_3, e_5\}$	$\{f_1, f_2, f_4\}$
MSO ₆	$\{e_1, e_2, e_3, e_4\}$	$\{f_1, f_2, f_3\}$
MSO ₇	$\{e_1, e_2, e_5, e_6\}$	$\{f_1, f_2, f_4, f_5\}$
MSO ₈	$\{e_1, e_2, e_4, e_6\}$	$\{f_1, f_2, f_3, f_5\}$

- The MTES:s are the first 6 MSO sets. (fewer MTESs than MSOs)
- The 2 last not even a TES.
- The TES corresponding to last TS:s are {e₁, e₂, e₃, e₅, e₆}, {e₁, e₂, e₃, e₄, e₆}



All equations in the overdetermined part contain faults so the MTES:s are the same as the MSO sets. If sensor y_{ω} could not fail, then MSO 3 will not be an MTES.

Summary

Consider a model M with faults \mathcal{F} .

TS/TES

- $\zeta\subseteq \mathcal{F}$ is a TS \Leftrightarrow there is a residual sensitive to the faults in ζ
- $\hfill \hfill \hfill$

 $(M \setminus \mathsf{eq}(\mathcal{F} \setminus \zeta))^+$

$MTES \ are$

- typically MSO sets.
- fewer than MSO sets.
- sensitive to minimal sets of faults.
- sufficient and necessary for maximum multiple fault isolability
- \Rightarrow candidates for deriving residuals

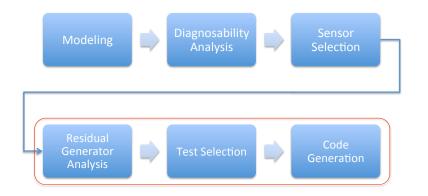
 $69 \, / \, 226$

Diagnosis Systems Design —

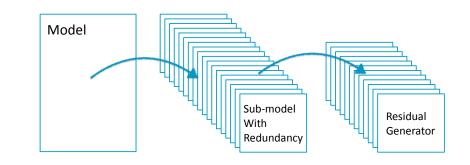
Outline

- Introduction
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

Design system design supported by structural methods



$A \ basic \ idea$



73 / 226

Diagnosis system design

A successful approach to diagnosis is to design a set of residual generators with different fault sensitivities.

$Designing \ diagnosis \ system \ utilizing \ structural \ analysis$

- Find (all) testable models (MSO/MTES/...)
- Select a subset of testable models based on for example
 - required fault isolability
 - differential index properties
- From each selected testable model generate code for the corresponding residual.
- Run residuals on measurement data and evaluate performance taking noise and model uncertainties into account.

Algorithms covered here

- Basic MSO algorithm
- Improved MSO algorithm
- MTES algorithm

Number of ARR/MSO

Number of ARRs/MSO and number of measurements

Number of ARRs/MSO is typically ${\it much}$ greater than the number of measurements

Typically

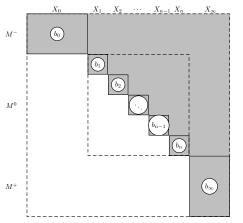
- Number of measurements = degree of redundancy
- Number of ARRs/MSO sets exponential in degree of redundancy

Common misunderstanding!

- Redundancy 4
 - 4 output sensors
- Set minimal submodels with redundancy ≈ 4500
- Many solutions available, choose wisely

Dulmage-Mendelsohn decomposition

A cornerstone in the MSO-algorithm is the Dulmage-Mendelsohn decomposition.



- In this algorithm we will only use it to find the overdetermined part M^+ of model M because
- All MSO sets are contained in the overdetermined part.

77 / 226

$Basic \ algorithm$

Try all combinations

	x_1	x_2	x_3	x_4
(1)	X			X
(2)	X	X		
(3)	X	X		X
(4)			X	
(5)			V	X
(0)			1	
(6)				X
(7)				X

- Remove (1)
- Get overdetermined part
 - Remove (4)
 - Get overdetermined part
 ⇒ (6)(7) MSO!
 - Remove (5)
 - Get overdetermined part \Rightarrow (6)(7) MSO!
 - Remove (6) . . .
- Remove (2) . . .

 MSO sets are found by alternately removing equations and computing the overdetermined part.

	x_1	x_2	x_3	x_4
(1)	X			X
				~ *
(2)	X	X		
(3)	X	X		X
(4)			X	
(5)				X
(6)			X	X

Properties of an MSO:

A structurally overdetermined part is an MSO set if and only if

equations = # unknowns +1

• The degree of redundancy decreases with one for each removal.

78 / 226

$Basic \ algorithm$

The basic algorithm is very easy to implement. In pseudo-code (feed with M^+):

```
1 function \mathcal{M}_{MSO} = \text{FindMSO}(M)
       if \varphi(M) = 1
 2
         \mathcal{M}_{MSO} := \{M\}
 3
      else
 4
          \mathcal{M}_{MSO} := \emptyset
 5
          for each e \in M
 6
             M' = (M \setminus \{e\})^+
            \mathcal{M}_{MSO} := \mathcal{M}_{MSO} \cup \mathsf{FindMSO}(M')
8
          end
9
      end
10
```

The same MSO set is found several times

• Example: Removing (1) and then (4) resulted in the MSO (6)(7).

	x_1	x_2	x_3	x_4	Remove (4)
(1)	V	Z	0.0	V	 Remove (1)
(1)	Λ			Λ	■ (6)(7) MSO!
(2)	X	X			
(3)	X	X		X	
(4)			X		
(1) (5)			X	X	
(6)				X	
(7)				X	

- If the order of removal is permuted, the same MSO set is obtained.
 ⇒ Permutations of the order of removal will be prevented.
 - · ·

 $81 \, / \, 226$

$Equivalence \ classes$

Let M be the model consisting of a set of equations. Equation e_i is related to equation e_i if

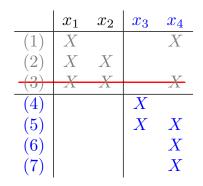
$$e_i \not\in (M \setminus \{e_j\})^+$$

It can easily be proven that this is an equivalence relation. Thus, [e] denotes the set of equations that is *not* in the overdetermined part when equation e is removed.

Equivalence classes

The same overdetermined part will be obtained independent on which equation in an equivalence class that is removed.

 Removal of different equations will sometimes result in the same overdetermined part.



Exploit this by defining equivalence classes on the set of equations

82 / 226

Unique decomposition of an overdetermined part

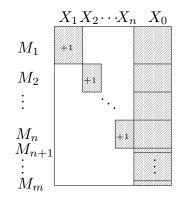
	ı		1	1	$M_1 = \{(1)(2)(3)\}$	$X_1 = \{x_1, x_2\}$
	x_1	x_2	x_3	x_4	$M_2 = \{(4)(5)\}$	$X_2 = \{x_3\}$
(1)	X			X	$M_3 = \{(6)\}$	$X_3 = \emptyset$
(2)	X	X				-
(3)	X	X		X	$M_4 = \{(7)\}$	$X_4 = \emptyset$
(4)			X			$X_0 = \{x_4\}$
(5)			X	X		
$\overline{(6)}$				X		
(7)				X		

- $|M_i| = |X_i| + 1$
- All MSO sets can be written as a union of equivalence classes, e.g.

$$\{(6)(7)\} = M_3 \cup M_4$$
$$\{(4)(5)(6)\} = M_2 \cup M_3$$

$Equivalence \ classes$

Any PSO set can be written on the canonical form



This form will be useful for

- improving the basic algorithm (now)
- performing diagnosability analysis (later)

Can be obtained easily with attractive complexity properties

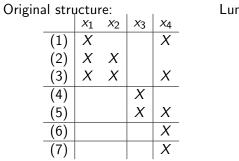
85 / 226

Improved algorithm

- The same principle as the basic algorithm.
- Avoids that the same set is found more than once.
 - Prohibits permutations of the order of removal.
 - Reduces the structure by lumping.

Lumping

• The equivalence classes can be lumped together forming a reduced structure.



Lumped structure:

	<i>x</i> ₄
$M_1 = \{(1)(2)(3)\}$	X
$M_1 = \{(1)(2)(3)\}$ $M_2 = \{(4)(5)\}$	X
$M_3 = \{(6)\}$	X
$M_4 = \{(7)\}$	X

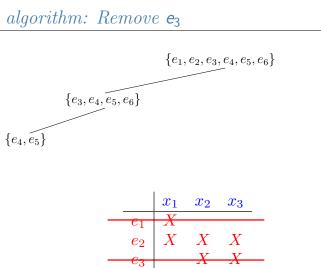
- There is a one to one correspondence between MSO sets in the original and in the lumped structure.
- The lumped structure can be used to find all MSO sets.

86 / 226

Lets consider this example again

			x_1	x_2	x_3
<i>e</i> ₁ :	$\dot{x}_1 = -x_1 + u + f_1$	e_1	X		
-	$\dot{x}_2 = x_1 - 2x_2 + x_3 + f_2$	e_2	X	X	X
<i>e</i> 3 :	$\dot{x}_3 = x_2 - 3x_3$	e_3		X	
<i>e</i> ₄ :	$y_1 = x_2 + f_3$				
<i>e</i> 5 :	$y_2 = x_2 + f_4$	e_4		X	
<i>e</i> ₆ :	$y_3 = x_3 + f_5$	e_5		X	
		e_6			X

 x_i represent the unknown variables, u and y_i the known variables, and f_i the faults to be monitored.



 e_4

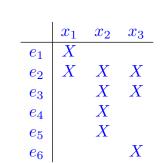
 e_5

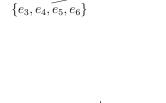
 e_6

X

X

X

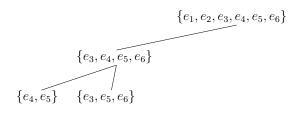


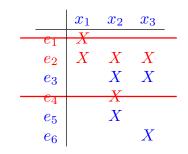


x_1	x_2	x_3	
\overline{X}			
1			
X	X	X	
	X	X	
	X		
	X		
		X	
	$\begin{array}{c c} x_1 \\ \hline X \\ \hline X \\ \hline \end{array}$	X X X X X X	X X X X X X X X

89/226

MSO algorithm: Go back and remove e_4



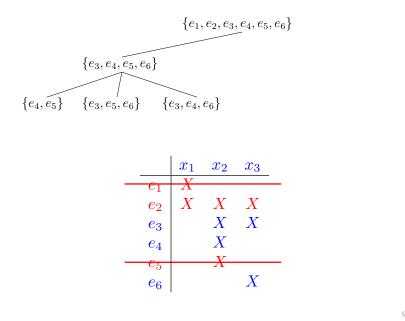


 $\{e_1, e_2, e_3, e_4, e_5, e_6\}$

MSO algorithm: Remove e_1 and compute $(M \setminus \{e_1\})^+$

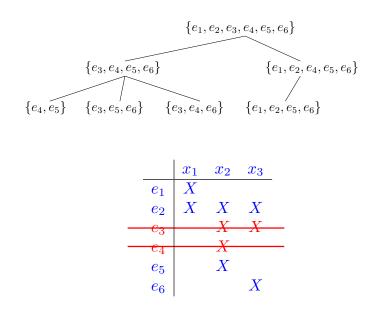
 $\{e_1, e_2, e_3, e_4, e_5, e_6\}$

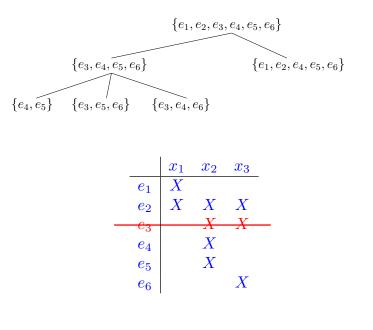
MSO algorithm: Go back and remove e_5



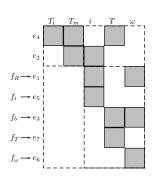
93 / 226

MSO algorithm: Remove e₄





Example - electrical motor



Equivalent classes:

Fault signatures:

			f _b	f _T	f_{ω}
r_1	Х	Х			Х
<i>r</i> ₂				Х	Х
r ₃	X X	Х	Х	Х	

Faults in an equivalence class will be sensitive to the same residuals.

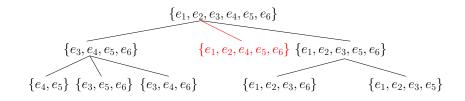
- An algorithm for finding all MSO sets for a given model structure
- Main ideas:
 - Top-down approach
 - Structural reduction based on the unique decomposition of overdetermined parts
 - Prohibit that any MSO set is found more than once.

An Efficient Algorithm for Finding Minimal Over-constrained Sub-systems for Model-based Diagnosis, Mattias Krysander, Jan Åslund, and Mattias Nyberg. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(1), 2008.

97 / 226

MTES algorithm

In the example e_3 is the only equation without fault. We will not remove e_3 We remove e_4 instead.



The nodes are TES:s and the leaves are MTES:s.

MTES algorithm

I will now present the algorithm that finds all MTESs and TESs.

A Structural Algorithm for Finding Testable Sub-models and Multiple Fault Isolability Analysis., Mattias Krysander, Jan Åslund, and Erik Frisk (2010). 21st International Workshop on Principles of Diagnosis (DX-10). Portland, Oregon, USA.

It is a slight modification of the MSO algorithm.

Basic idea

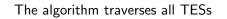
There's no point removing equations that doesn't contain faults, since high sensitivity to faults is desirable.

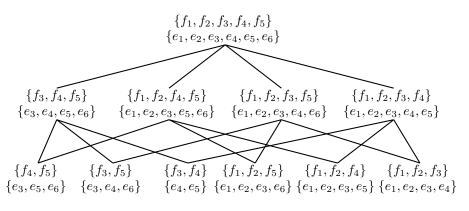
Modification

Stop doing that!

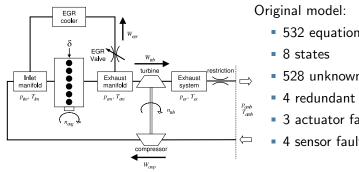
98 / 226

All TSs and TESs for the model



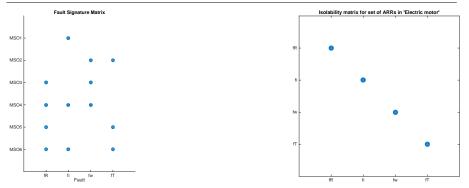


The fault sets above are all possible fault sensitivites!



- 532 equations
- 528 unknowns
- 4 redundant eq.
- 3 actuator faults
- 4 sensor faults
- Reduces the resulting number of testable sets:
 - 1436 MSO sets cmp. to 32 MTESs which all are MSOs.
 - Only 6 needed for full single fault isolation.
- Reduces the computational burden:
 - 1774 PSO sets \sim runtime MSO-alg. (2.5 s)
 - 61 TESs \sim runtime MTES-alg. (0.42 s)
 - Few number of faults cmp to the number of equations.

Problem formulation



Test selection problem

Given:

- A fault signature matrix (e.g. based on MSO sets/MTES)
- A desired fault isolability (e.g. specified as an isolability matrix)

Output: A small set of tests with required strucutral isolability

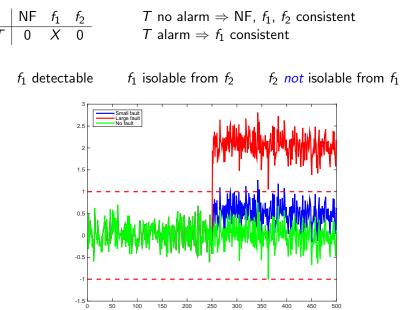
Test selection

- Many candidate residual generators (MSOs/MTESs) can be computed, only a few needed for single fault isolation.
- Realization of a residual generator can be computationally demanding.

Careful selection of which test to design in order to achieve the specified diagnosis requirements with few tests.

Later we will also describe how to select tests in order to obtain low differential index models.

Fault isolability of tests



Test selection is a minimal hitting set problem



Test selection 7

A minimal set of tests T is a solution if $T \cap T_i \neq \emptyset$ for all desired diagnosability properties *i*.

 $105 \, / \, 226$

Test selection

Many more alternatives in for example:

De Kleer, Johan. "Hitting set algorithms for model-based diagnosis." 22th International Workshop on Principles of Diagnosis, DX, 2011.

Test selection

• Find all minimal test sets with a minimal hitting set algorithm.

Might easily lead to computationally intractable problems.

J. De Kleer, BC Williams. "Diagnosing multiple faults". Artificial intelligence 32 (1), 97-130, 1987.

• Find an approximate minimum cardinality hitting set

A greedy search for one small set of tests. Fast with good complexity properties, but cannot guarantee to find the smallest set of tests.

Cormen, L., Leiserson, C. E., and Ronald, L. (1990). Rivest, "Introduction to Algorithms.", 1990.

Iterative approach involving both test selection and residual generation.

106 / 226

Example

	NF	f _R	f _i	f_{ω}	f _T
f_R	3 - 6	-	3,5	5,6	3,4
f_i	1,4,6	1	_	1,6	1,4
f_{ω}	2-4	2	2,3	_	3,4
f_T	2, 5, 6	2	2,5	5,6	_

- Minimal test sets for full single fault isolability: {1,2,4,5}, {1,2,3,5}, {1,2,3,6}
- Assume that we do not care to isolate f_R and f_i, i.e., the desired isolability can be specified as:

	f _R	f _i	f_{ω}	f_T
f_R	1	1	0	0
f _i	1	1	0	0
f_{ω}	0	0	1	0
f_T	0	0	0	1

• Minimum cardinality solution: {2,4,6}

Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

	$ f_1$				NF	f.	fa	f ₂
	X				1,2,4			
r ₂	X	Y	X		1,3			
	x		Λ	f_3	2,3	3	2	-

- Select residual generator 1. Realization pass.
- Select residual generator 2. Realization fails.
- Select residual generator 3. Realization pass.
- Select residual generator 4. Realization pass.

109/226

Outline

- Introduction
- Structural models and basic definitions
- Diagnosis system design
- $\bullet \ Residual \ generation$
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

- Residual generation -

110/226

Residual generation and structural analysis

- Structural analysis of model can be of good help
- A matching gives information which equations can be used to (in a best case) compute/estimate unknown variables
- Careful treatment of dynamics
- Again, not general solutions but helpful approaches in your diagnostic toolbox

Two types of methods covered here

- Sequential residual generation
- Observer based residual generation

Principle sketch and model for bellows in an air suspension system in a truck

$$Mg$$

$$M\ddot{h} = -Mg + F_b(p, h) - \mu\dot{h} + f_1 \quad (1)$$

$$pV(p, h) = mRT \quad (2)$$

$$\dot{m} = u_1g_1(p) + u_2g_2(p) + f_2 \quad (3)$$

$$y_1 = p + f_3 \quad (4)$$

$$y_2 = h + f_4 \quad (5)$$

$$f_1 - \text{ change in mass } M \qquad f_2 - \text{ fault in actuation}$$

 f_3 - fault in the pressure sensor f_4 - fault in distance measurement

 $113 \, / \, 226$

Example 1: ARR or observer?

pV(p,h) = mRT	(2)
$\dot{m} = u_1 g_1(p) + u_2 g_2(p) + f_2$	(3)
$y_1 = p + f_3$	(4)
$y_2 = h + f_4$	(5)

Observer

 Elimination looks feasible? After substitution of sensor values, two equations remain.

ARR

• What about dynamics? The derivative appears linearly.

• An ARR approach look possible.

- The model is a DAE and must therefore be rewritten in state-space form.
- The state *m*, is it possible to estimate without using the state equation (3)? Yes, solve *m* from (2) and substitute the measurements.
- Observer looks possible also.

To isolate from f_1 , do not use equation (1).

$$M\ddot{h} = -Mg + F_b(p,h) - \mu\dot{h} + d$$
(1)

$$pV(p,h) = mRT \tag{2}$$

$$\dot{m} = u_1 g_1(p) + u_2 g_2(p) + f_2$$
 (3)

$$y_1 = p + f_3 \tag{4}$$

$$y_2 = h + f_4 \tag{5}$$

If a residual can be created using equations 2-5 then faults f_2 , f_3 , and f_4 has been isolated from change in mass f_1

114 / 226

Example 1: ARR

After substituting measurements, there are two equations

$$\dot{m} = u_1 g_1(y_1) + u_2 g_2(y_1)$$

 $y_1 V(y_1, y_2) = mRT$

Differentiate equation 2 and insert

$$\frac{d}{dt}(y_1V(y_1,y_2)) - RT(u_1g_1(y_1) + u_2g_2(y_1)) = 0$$

The derivative appears linearly, so

$$\dot{r} + \alpha r = \frac{d}{dt} (y_1 V(y_1, y_2)) - RT(u_1 g_1(y_1) + u_2 g_2(y_1))$$

With the state $w = r - y_1 V(y_1, y_2)$ the state-space realization is then

$$\dot{w} = -\alpha(w + y_1 V(y_1, y_2)) - RT(u_1 g_1(y_1) + u_2 g_2(y_1))$$

$$r = w + y_1 V(y_1, y_2)$$

After substituting measurement signals there are two equationsekvationer kvar

$$\dot{m} = u_1 g_1(y_1) + u_2 g_2(y_1)$$

 $y_1 V(y_1, y_2) = mRT$

Use the second equation as a measurement equation and feedback to estimate the state m

$$\dot{\hat{m}} = u_1 g_1(y_1) + u_2 g_2(y_1) + K(y_1 V(y_1, y_2) - \hat{m} RT)$$

$$r = y_1 V(y_1, y_2) - \hat{m} RT$$

To isolate from fault f_4 , do not use equation (5).

$$M\ddot{h} = -Mg + F_b(p,h) - \mu\dot{h} + f_1 \qquad (1$$

$$pV(p,h) = mRT \tag{2}$$

$$\dot{m} = u_1 g_1(p) + u_2 g_2(p) + f_2$$
 (3)

$$y_1 = p + f_3 \tag{4}$$

$$y_2 = h + f_4 \tag{5}$$

If a residual can be created using equations 1-4 then we have isolated f_1 , f_2 , and f_3 from fault f_4 .

117/226

Example 2: ARR

Substitute measurement $y_1 = p$ and we obtain

$$\begin{aligned} M\ddot{h} &= -Mg + F_b(y_1, h) - \mu\dot{h} \\ y_1 V(y_1, h) &= mRT \\ \dot{m} &= u_1 g_1(y_1) + u_2 g_2(y_1) \end{aligned}$$

To continue the elimination process for h och m is not as easy as last time.

Turns out that we have to differentiate equation (2) three times, leading to $y^{(3)}$ will be included in the ARR.

An ARR approach is not attractive, try an observer approach!

Example 2: Observer

Write the model in state-space form with $x = (h, \dot{h}, m)$

$$\begin{split} M\ddot{h} &= -Mg + F_b(y_1, h) - \mu \dot{h} & \dot{x}_1 = x_2 \\ y_1 V(y_1, h) &= mRT & \Rightarrow \\ \dot{m} &= u_1 g_1(y_1) + u_2 g_2(y_1) & \dot{x}_2 = -g + \frac{1}{M} F_b(y_1, x_1) - \frac{\mu}{M} x_2 \\ \dot{x}_3 &= u_1 g_1(y_1) + u_2 g_2(y_1) \\ & 0 &= y_1 V(y_1, x_1) - x_3 RT \end{split}$$

Again, with the last equation as a measurement equation we get a residual generator in the form

$$\begin{aligned} \dot{\hat{x}}_1 &= \hat{x}_2 &+ K_1(y_1 V(y_1, \hat{x}_1) - \hat{x}_3 RT) \\ \dot{\hat{x}}_2 &= -g + \frac{1}{M} F_b(y_1, \hat{x}_1) - \frac{\mu}{M} \hat{x}_2 &+ K_2(y_1 V(y_1, \hat{x}_1) - \hat{x}_3 RT) \\ \dot{\hat{x}}_3 &= u_1 g_1(y_1) + u_2 g_2(y_1) &+ K_3(y_1 V(y_1, \hat{x}_1) - \hat{x}_3 RT) \\ r &= y_1 V(y_1, \hat{x}_1) - \hat{x}_3 RT \end{aligned}$$

där K_i väljs så att $\hat{x} \to x$, dvs. vi har stabilitet.

 $118 \, / \, 226$

Sequential residual generation

Basic~idea

Given: A set of equations with redundancy **Approach**: Choose computational sequence for the unknown variables and check consistency in redundant equations

- Popular in DX community
- Easy to automatically generate residual generators from a given model
- choice how to interpret differential constraints, derivative/integral causality
- Interesting, but not without limitations

121 / 226

Basic principle - Sequential residual generation

Basic approach

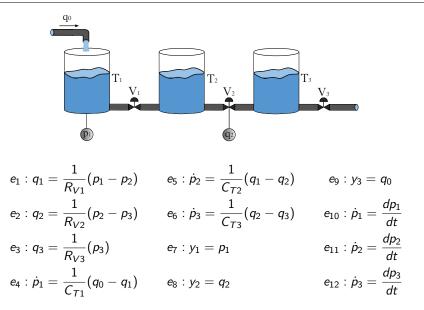
- Given a testable set of equations (MSO/MTES/...)
- Ompute a matching (Dulmage-Mendelsohn decomposition)
- Solve according to decomposition (numerically or symbolically)
- Ompute residuals with the redundant equations

Sequential residual generation

5 equations, 4 unknowns	
$e_1: \dot{x}_1 - x_2 = 0$	<i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₄ <i>x</i> ₃
e_2 : $\dot{x}_3 - x_4 = 0$	$e_5 X$
$e_3: \dot{x}_4 x_1 + 2x_2 x_4 - y_1 = 0$	$\begin{array}{c cccc} e_1 & X & X \\ e_3 & X & X & X \end{array}$
$e_4: x_3 - y_3 = 0$	e_2 X
$e_5: x_2 - y_2 = 0$	e ₄ X

Solve according to order in decomposition:

Illustrative example



There are 6 MSO sets for the model, for illustration, use

$$\mathcal{M} = \{e_1, e_4, e_5, e_7, e_8, e_9, e_{10}, e_{11}\}$$

Redundancy 1: 8 eq., 7 unknown variables $(q_0, q_1, q_2, p_1, p_2, \dot{p}_1, \dot{p}_2)$

$$e_{1}: q_{1} = \frac{1}{R_{V1}}(p_{1} - p_{2}) \qquad e_{7}: y_{1} = p_{1} \qquad e_{10}: \dot{p}_{1} = \frac{dp_{1}}{dt}$$

$$e_{4}: \dot{p}_{1} = \frac{1}{C_{T1}}(q_{0} - q_{1}) \qquad e_{8}: y_{2} = q_{2} \qquad e_{11}: \dot{p}_{2} = \frac{dp_{2}}{dt}$$

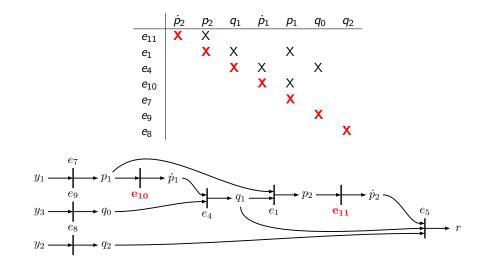
$$e_{5}: \dot{p}_{2} = \frac{1}{C_{T2}}(q_{1} - q_{2}) \qquad e_{9}: y_{3} = q_{0}$$

Redundant equation

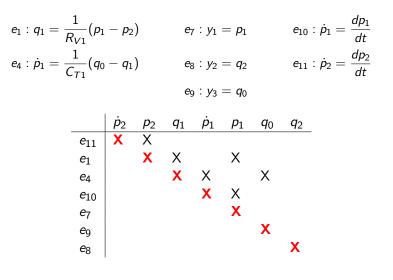
For illustration, choose equation e_5 as a redundant equation, i.e., compute unknown variables using $(e_1, e_4, e_7, e_8, e_9, e_{10}, e_{11})$

125 / 226

Computational graph for matching



Equations e_{10} and e_{11} in **derivative** causality.



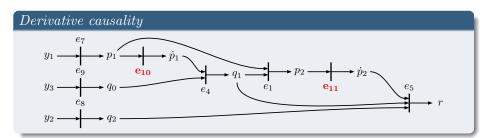
126 / 226

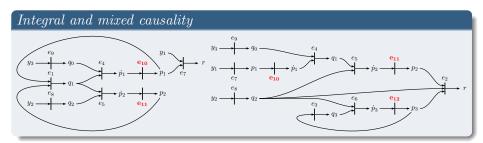
Residual generator code

Fairly straightforward to generate code automatically for this case

Code	
q2 = y2; % e8	
q0 = y3; % e9	
p1 = y1; % e7	
<pre>dp1 = ApproxDiff(p1,state.p1,Ts);</pre>	% e10
q1 = q0-CT1*dp1; % e4	
p2 = p1-Rv1*q1; % e1	
<pre>dp2 = ApproxDiff(p2,state.p2,Ts);</pre>	% e11
r = dp2-(q1-q2)/CT2; % e5	

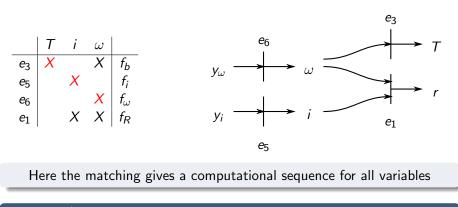
Causality of sequential residual generators





129 / 226

Matching and Hall components



Important!

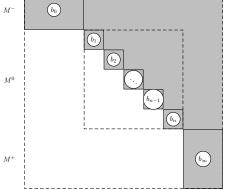
This is generally not true

- Derivative causality
 - + No stability issues
 - Numerical differentiation highly sensitive to noise
- Integral causality
 - Stability issues
 - $\,+\,$ Numerical integration good wrt. noise
- Mixed causality a little of both

Not easy to say which one is always best, but generally integration is preferred to differentiation

130/226

Hall components & Dulmage-Mendelsohn decomposition



- The blocks in the exactly determined part is called Hall components
- If a Hall component is of size 1; compute variable x_i in equation e_i
- If Hall component is larger (always square) than $1 \Rightarrow$ system of equations that need to be solved simultaneously

Hall components and computational loops

5 equations, 4 unknowns							
$e_1: \dot{x}_1 - x_2 = 0$		X_1	<i>x</i> 2	<i>X</i> 4	X3		
$e_2: \dot{x}_3 - x_4 = 0$	<i>e</i> ₅		X				
$e_3: \dot{x}_4 x_1 + 2x_2 x_4 - y_1 = 0$	-	Χ					
$e_4: x_3 - y_3 = 0$	e ₃	X	Χ	Х			
$e_5: x_2 - y_2 = 0$	e_2			Х			
	<i>e</i> ₄				X		

- Two Hall components of size 1 and one of size 2 $(x_3, e_4) \rightarrow (x_4, e_2) \rightarrow (\{x_1, x_2\}, \{e_1, e_5\})$
- If only algebraic constraints \Rightarrow algebraic loop
- If differential constraint \Rightarrow loop in integral causality

A matching finds computational sequences, including identifing computational loops

DAE models

DAE model

An MSO/submodel consists of a number of equations g_i , a set of dynamic variables x_1 , and a set of algebraic variables x_2

$$g_i(dx_1, x_1, x_2, z, f) = 0 \qquad i = 1, \dots, n$$
$$dx_1 = \frac{d}{dt}x_1$$

- A DAE model where you can solve for highest order derivatives dx_1 and x_2 , is called a *low-index*, or *low differential-index*, DAE model.
- Essentially equivalent to state-space models

For structurally low-index problems, code for observers can be generated

Observer based residual generation

The basic idea in observer based residual generation is the same as in sequential residual generation

- **@** Estimate/compute unknown variables \hat{x}
- ② Check if model is consistent with \hat{x}

With an observer the most basic setup model/residual generator is

$$\dot{x} = g(x, u) \qquad \dot{\hat{x}} = g(\hat{x}, u) + K(y - h(\hat{x}, u))$$
$$y = h(x, u) \qquad r = y - h(\hat{x}, u)$$

Design procedures typically available for state-space models

- pole placement
- EKF/UKF/Monte-Carlo filters
- Sliding mode
- . . .

Submodels like $\mathsf{MSE}/\mathsf{MTES}$ are not typically in state-space form!

134 / 226

Example: Three Tank example again

$$e_{1}: q_{1} = \frac{1}{R_{V1}}(p_{1} - p_{2}) \qquad e_{5}: \dot{p}_{2} = \frac{1}{C_{T2}}(q_{1} - q_{2}) \qquad e_{8}: y_{2} = q_{2}$$
$$e_{4}: \dot{p}_{1} = \frac{1}{C_{T1}}(q_{0} - q_{1}) \qquad e_{7}: y_{1} = p_{1} \qquad e_{9}: y_{3} = q_{0}$$
$$MSO \ \mathcal{M} = \{e_{1}, \ e_{4}, \ e_{5}, \ e_{7}, \ e_{8}, \ e_{9}, \ e_{10}, \ e_{11}\}$$

This is not a state-space form, suitable for standard observer design techniques. But it is low-index so it is close enough.

Partition model using structure

Dynamic equations	Algebraic equations	Redundant equation
$egin{aligned} \dot{p}_1 &= rac{1}{C_{\mathcal{T}1}}(q_0-q_1) \ \dot{p}_2 &= rac{1}{C_{\mathcal{T}2}}(q_1-q_2) \end{aligned}$	$0 = q_0 - y_3$ $0 = q_1 R_{V1} - (p_1 - p_2)$ $0 = q_2 - y_2$	$r = y_1 - p_1$

Partition to DAE observer

Partition model using structure

Dynamic equations	Algebraic equations	Redundant equation
$\dot{p}_1 = rac{1}{C_{\mathcal{T}1}}(q_0-q_1) \ \dot{p}_2 = rac{1}{C_{\mathcal{T}2}}(q_1-q_2)$	$0 = q_0 - y_3$ $0 = q_1 R_{V1} - (p_1 - p_2)$ $0 = q_2 - y_2$	$r = y_1 - p_1$

DAE observer

$$\dot{\hat{p}}_{1} = \frac{1}{C_{T1}}(\hat{q}_{0} - \hat{q}_{1}) + K_{1}r \qquad 0 = \hat{q}_{0} - y_{3}$$
$$\dot{\hat{p}}_{2} = \frac{1}{C_{T2}}(\hat{q}_{1} - \hat{q}_{2}) + K_{2}r \qquad 0 = \hat{q}_{1}R_{V1} - (\hat{p}_{1} - \hat{p}_{2})$$
$$0 = \hat{q}_{2} - y_{2}$$
$$0 = r - y_{1} + \hat{p}_{1}$$

DAE observer for low-index model

For a model in the form

$$\begin{aligned} \dot{x}_1 &= g_1(x_1, x_2, z, f) \\ 0 &= g_2(x_1, x_2, z, f), \quad \frac{\partial g_2}{\partial x_2} \text{ is full column rank} \\ 0 &= g_r(x_1, x_2, z, f) \end{aligned}$$

a DAE-observer can be formed as

$$\dot{\hat{x}}_1 = g_1(\hat{x}_1, \hat{x}_2, z) + \mathcal{K}(\hat{x}, z)g_r(\hat{x}_1, \hat{x}_2, z) 0 = g_2(\hat{x}_1, \hat{x}_2, z)$$

The observer estimates x_1 and x_2 , and then a residual can be computed as

$$r = g_r(\hat{x}_1, \hat{x}_2, z)$$

Important: Very simple approach, no guarantees of observability of performance

Models with low differential index

A low-index DAE model

$$g_i(dx_1, x_1, x_2, z, f) = 0$$
 $i = 1, ..., n$
 $dx_1 = \frac{d}{dt}x_1$ $i = 1, ..., m$

has the property

 $\left. \begin{pmatrix} \frac{\partial g}{\partial dx_1} & \frac{\partial g}{\partial x_2} \end{pmatrix} \right|_{x=x_0, \ z=z_0}$ full column rank

Structurally, this corresponds to a maximal matching with respect to dx_1 and x_2 in the model structure graph.

Model can be transformed into the form

$$\begin{aligned} \dot{x}_1 &= g_1(x_1, x_2, z, f) \\ 0 &= g_2(x_1, x_2, z, f), \quad \frac{\partial g_2}{\partial x_2} \text{ is full column rank} \\ 0 &= g_r(x_1, x_2, z, f) \end{aligned}$$

138 / 226

DAE observer for low-index model

The observer

$$\begin{aligned} \dot{\hat{x}}_1 &= g_1(\hat{x}_1, \hat{x}_2, z) + \mathcal{K}(\hat{x}, z)g_r(\hat{x}_1, \hat{x}_2, z) \\ 0 &= g_2(\hat{x}_1, \hat{x}_2, z) \\ r &= g_r(\hat{x}_1, \hat{x}_2, z) \end{aligned}$$

corresponds to the standard setup DAE

$$M\dot{w} = \begin{pmatrix} g_1(\hat{x}_1, \hat{x}_2, z) + K(\hat{x}, z)g_r(\hat{x}_1, \hat{x}_2, z) \\ g_2(\hat{x}_1, \hat{x}_2, z) \\ r - g_r(x_1, x_2, z) \end{pmatrix} = F(w, z)$$

where the mass matrix M is given by

$$M = \begin{pmatrix} I_{n_1} & 0_{n_1 \times (n_2 + n_r)} \\ 0_{(n_2 + n_r) \times n_1} & 0_{(n_2 + n_r) \times (n_2 + n_r)} \end{pmatrix}$$

Run the residual generator

Low-index DAE models and ODE solvers

A dynamic system in the form

 $M\dot{x} = f(x)$

with mass matrix M possibly singular, can be integrated by (any) stiff ODE solver capable of handle low-index DAE models. **Example**: ode15s in Matlab.

- Fairly straightforward, details not included, to generate code for function f(x) above for low-index problems
- Code generation similar to the sequential residual generators, but only for the highest order derivatives
- Utilizes efficient numerical techniques for integration

141/226

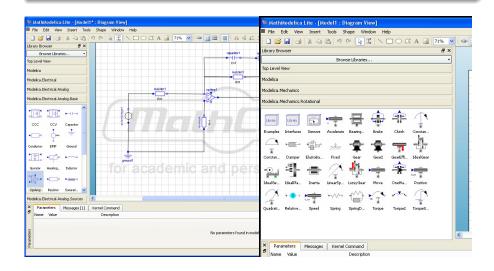
Outline

- Introduction
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

— Diagnosability analysis —

Problem formulation

Given a dynamic model: What are the fault isolability properties?



$Diagnosability\ analysis$

Diagnosability analysis

Determine for a

- model
- Ø diagnosis system

which faults that are structurally detectable and what are the structural isolability properties.

MSO based approach

Since the set of MSOs characterize all possible fault signatures, the MSOs can be used to determine structural isolability of a given model. Often computationally intractable. Just too many.

Better way

Utilize steps in the MSO algorithm; equivalence classes!

145 / 226

$Diagnosability \ analysis \ for \ a \ set \ of \ tests/model$

A test/residual with fault sensitivity

$$\begin{array}{c|c} f_1 & f_2 \\ \hline r & X & 0 \end{array}$$

makes it possible to isolate fault f_1 from fault f_2 . Now, consider single fault isolability with a diagnosis system with the fault signature matrix

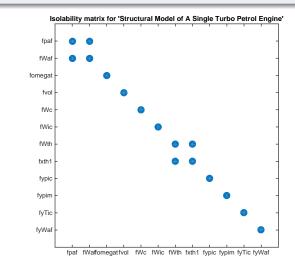
The corresponding isolability matrix is then

	f_1	f_2	f ₃
f_1		Χ	0
f_2	0	Х	0
f ₃	0	Χ	X

Isolability matrices

Interpretation

A X in position (i,j) indicates that fault f_i can not be isolated from fault f_j



146/226

Structural fault modelling

Assumption

A fault f only violates 1 equation, referred to by e_f .

If a fault signal f appears in more than one position in the model,

$$e_1 : 0 = g_1(x_1, x_2) + x_f$$

$$e_2 : 0 = g_2(x_1, x_2) + x_f$$

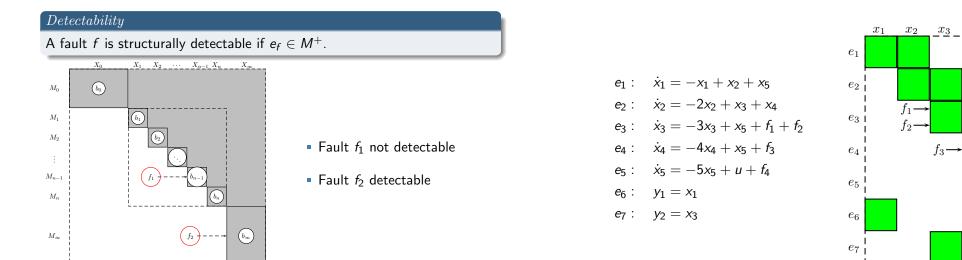
$$e_3 : x_f = f$$

(2) Introduce new unknown variable x_f

a Add new equation $x_f = f$

Now, the model fulfills the assumption.

Detectability in small example



 $149 \, / \, 226$

Structural isolability

Isolability

A fault F_i is isolable from fault F_j if $\mathcal{O}(F_i) \not\subseteq \mathcal{O}(F_j)$

Meaning, there exists observations from the faulty mode F_i that is not consistent with the fault mode F_i .

• Structurally, this corresponds to the existence of an MSO that include e_{f_i} but not e_{f_i}

• or equivalently, fault F_i is detectable in the model where fault F_j is decoupled

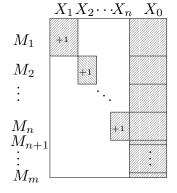
Structural isolability

 F_i structurally isolable from F_j iff $e_{f_i} \in (M \setminus \{e_{f_j}\})^+$

Structural single fault isolability can thus be determined by n_f^2 M^+ -operations. For single fault isolability, we can do better.

Equivalence classes and isolability

From before we know that M^+ of a model can be always be written on the canonical form



- Equivalence classes M_i has the defining property: remove one equation e, then none of the equations are members of (M \ {e})⁺
- Detectable faults are isolable if and only if they influence the model in different equivalence classes

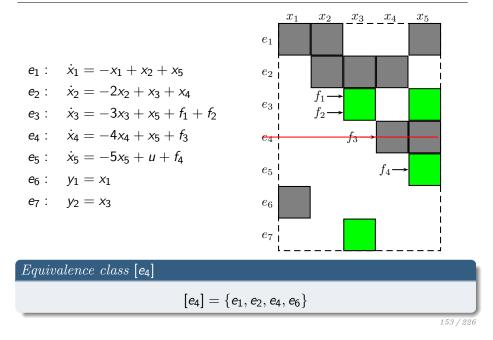
150/226

 x_4

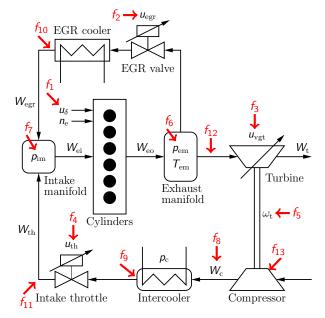
 f_4-

 x_5

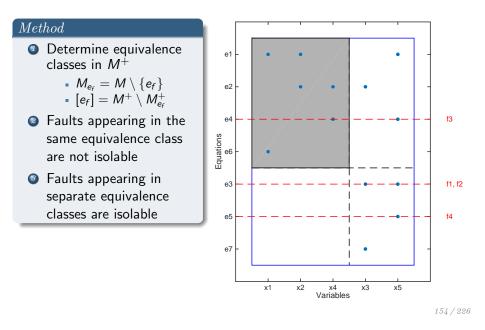
Isolability from fault f_3 in small example



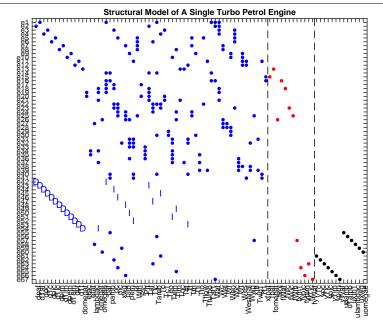
Example system - A automotive engine with EGR/VGT



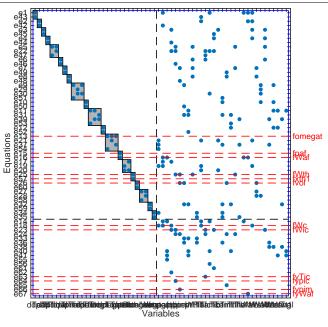
Method - Diagnosability analysis of model



Model structure

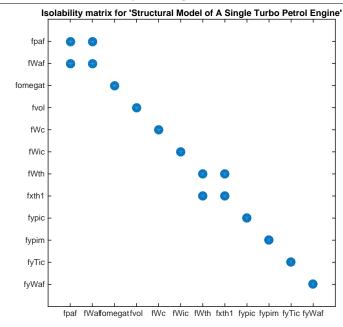


Dulmage-Mendelsohn with equivalence classes



157/226

Fault isolation matrix for engine model



158/226

Diagnosability under a causal interpretation

 C^+_{causal} = set of monitorable constraints under a causal interpretation of differential constraints.

Definition (Causal Structural Detectability/Isolability)

A fault f is causally structurally detectable in a model if

$$\mathcal{C}_{f} \in \mathcal{C}^+_{\mathit{causal}}$$

A fault f_i is causally structurally isolable from f_i in a model if

 $c_{f_i} \in (\mathit{C} \setminus \{\mathit{c}_{f_j}\})^+_{\mathit{causal}}$

No details here: Possible to define C^+_{causal} for *integral*, *derivative*, and *mixed*.

Structural detectability and isolability

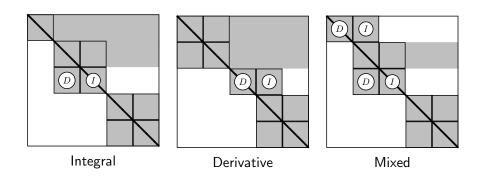
A fault f is structurally detectable if $e_f \in M^+$.

A fault f_i is structurally isolable from f_i if $e_{f_i} \in (M \setminus \{e_{f_i}\})^+$

Structural detectability and isolability properties can be obtained by a number of C+ operations.

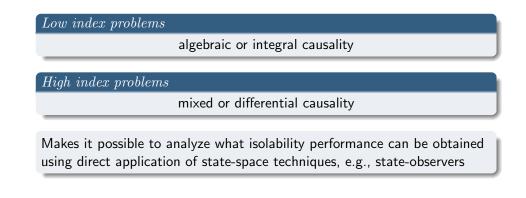
Solvability of a set of exactly determined equations

Causality and differential index



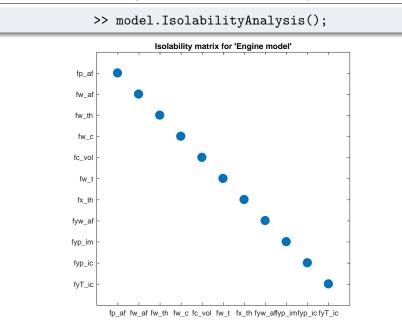
161/226

163 / 226



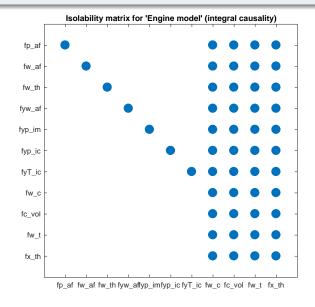
162/226

The automotive engine – mixed causality

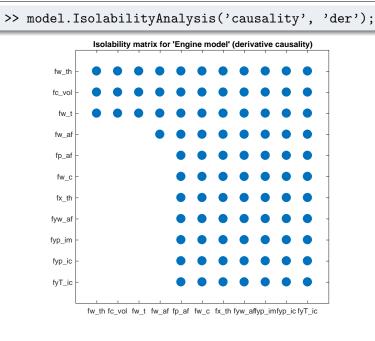


The automotive engine – integral causality

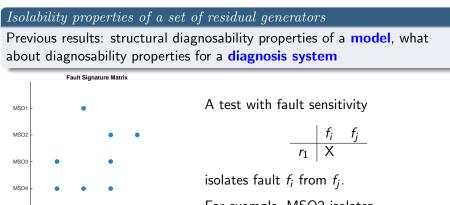
>> model.IsolabilityAnalysis('causality', 'int');



The automotive engine – derivative causality



Diagnosability analysis for a fault signature matrix

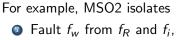


MSO5

MSO6

fR

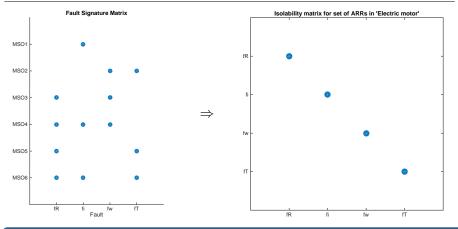
Fault



② Fault f_T from f_R and f_i

166 / 226

Diagnosability analysis for a fault signature matrix



Rule: Diagnosability properties for a FSM

Fault f_i is isolable from fault f_j if there exists a residual sensitive to f_i but not f_j

— Sensor Placement Analysis —

Outline

- Introduction
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

169 / 226

Minimal sensor sets and problem formulation

Given:

- A set \mathcal{P} of possible sensor locations
- A detectability and isolability performance specification

MINIMAL SENSOR SET

A multiset S, defined on \mathcal{P} , is a minimal sensor set if the specification is fulfilled when the sensors in S are added, but not fulfilled when any proper subset is added.

PROBLEM STATEMENT

Find all minimal sensor sets with respect to a required isolability specification and possible sensor locations for any linear differential-algebraic model

 $e_{1}: \quad \dot{x}_{1} = -x_{1} + x_{2} + x_{5}$ $e_{2}: \quad \dot{x}_{2} = -2x_{2} + x_{3} + x_{4}$ $e_{3}: \quad \dot{x}_{3} = -3x_{3} + x_{5} + f_{1} + f_{2}$ $e_{4}: \quad \dot{x}_{4} = -4x_{4} + x_{5} + f_{3}$ $e_{5}: \quad \dot{x}_{5} = -5x_{5} + u + f_{4}$

Question: Where should I place sensors to make faults f_1, \ldots, f_4 detectable and isolable, as far as possible?

For example:

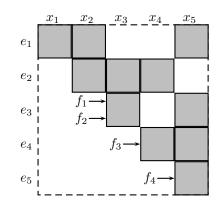
- $\{x_1\}, \{x_2\}, \{x_3, x_4\} \Rightarrow$ detectability of all faults
- $\{x_1, x_3\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_4\}, \{x_3, x_4\} \Rightarrow$ maximum, not full, fault isolability of f_1, \ldots, f_4
- $\{x_1, x_1, x_3\} \Rightarrow$ Possible to isolate also faults in the new sensors

More than one solution, how to characterize all solutions?

170/226

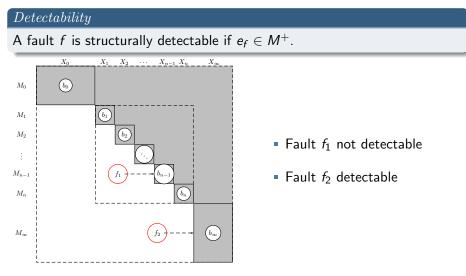
A Structural Model

- $e_1: \dot{x}_1 = -x_1 + x_2 + x_5$
- $e_2: \quad \dot{x}_2 = -2x_2 + x_3 + x_4$
- $e_3: \quad \dot{x}_3 = -3x_3 + x_5 + f_1 + f_2$
- $e_4: \dot{x}_4 = -4x_4 + x_5 + f_3$
- $e_5: \dot{x}_5 = -5x_5 + u + f_4$



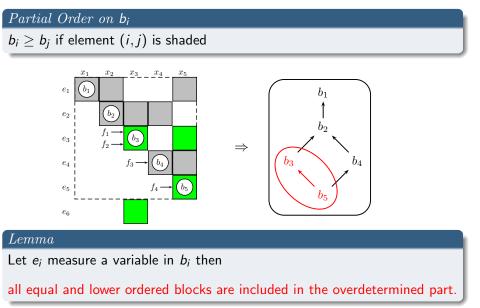
Detectability

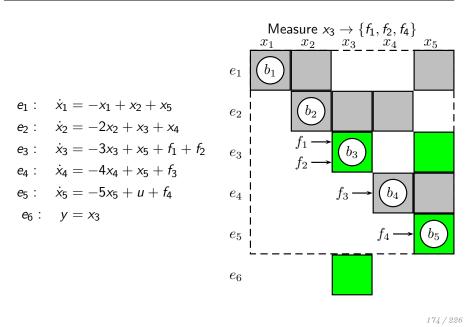
• Assume that a fault f only violate 1 equation, e_f .



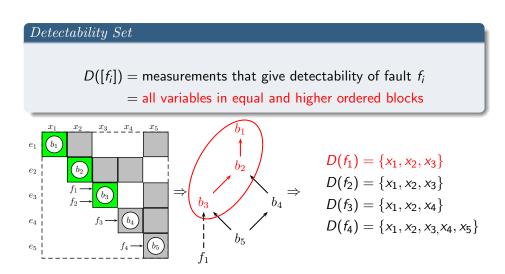
173 / 226

Define a Partial Order on b_i





Minimal Sensor Sets - Detectability



Minimal Sensor Sets - Detectability

Sensor placement for isolability

Sensor set for detectability

S is a sensor set achieving detectability if and only if S has a non-empty intersection for all $D(f_i)$.

A standard minimal hitting-set algorithm can be used to obtain the minimal sensor sets.

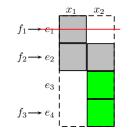
$$D(f_1) = \{x_1, x_2, x_3\}$$

$$D(f_2) = \{x_1, x_2, x_3\}$$

$$D(f_3) = \{x_1, x_2, x_4\}$$

$$D(f_4) = \{x_1, x_2, x_3, x_4, x_5\}$$

$$\Rightarrow \qquad \{x_1\}, \{x_2\}, \{x_3, x_4\}$$



 f_i is isolable from f_1 if there exists a residual r such that

$$\begin{array}{c|c} f_i & f_1 \\ \hline r & X & 0 \end{array}$$

Isolability characterization: f_i is structurally isolable from f_1 if $e_{f_i} \in (M \setminus \{e_{f_1}\})^+$.

 f_3 is isolable from f_1 in $M = \{e_1, \ldots, e_4\}$ and f_3 is detectable in $M \setminus \{e_1\}$

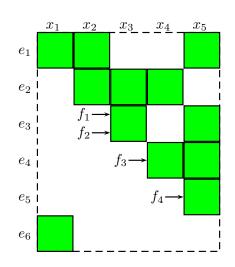
The sensor placement problem of achieving isolability from f_1 in M is transformed to the problem of achieving detectability in $M \setminus \{e_1\}$.

Proceed as in the linear case to achieve isolability.

178/226

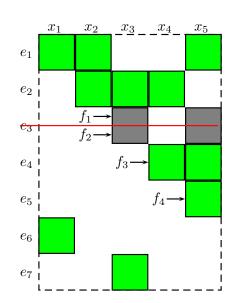
177 / 226

Sensor placement for maximal isolability



- detectability necessary for isolability
- minimal sensor sets: {x1}, {x2}, {x3, x4}
- add e.g. measurement x_1
- all faults are detectable

Making faults isolable from f_1



- Which faults are isolable from f₁ with existing sensors?
 ⇒ no faults are isolable from f₁
- Applying the detectability algorithm gives detectability sets

$$D(f_3) = \{x_3, x_4\}$$
$$D(f_4) = \{x_3, x_4, x_5\}$$

detectability sets for maximum isolability

isolate from $\{f_1, f_2\} : \{x_3, x_4\}$ isolate from $f_3 : \{x_3, x_4\} \Rightarrow \{x_3\}, \{x_4\}$ isolate from $f_4 : \{x_2, x_3, x_4, x_5\}$

- measurement x₁ was added to achieve detectability
- Maximal isolability is obtained for $\{x_1,x_3\},\ \{x_1,x_4\}$
- This is not all minimal sensor sets!

• Minimal sensor sets for full detectability

 $\{x_1\}, \{x_2\}, \{x_3, x_4\}$

- The first set $\{x_1\}$ was selected, iterate for all!
- Minimal sensor sets for maximum isolability:

 $\{x_1, x_3\}, \{x_1, x_4\}, \{x_2, x_3\}, \{x_2, x_4\}, \{x_3, x_4\}$

181 / 226

How about faults in the new sensors?

"Sloppy" versions of two results

Lemma

Faults in the new sensors are detectable

This is not surprising, a new sensor equation will always be in the over determined part of the model, that was its objective.

Lemma

Let \mathcal{F} be a set of detectable faults in a model M and f_s a fault in a new sensor. Then it holds that f_s is isolable from all faults in \mathcal{F} automatically.

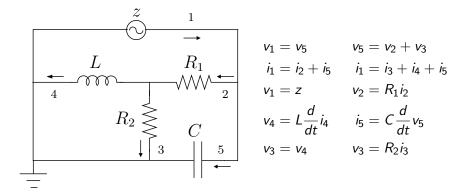
This result were not as evident to me, but it is nice since it makes the algorithm for dealing with faults in the new sensors very simple.

Method summary

- For each detectability and isolability requirement, compute detectability sets
 - Dulmage-Mendelsohn decomposition + identify partial order
- Apply a minimal hitting-set algorithm to all detectability sets to compute all minimal sensor sets

The minimal sensor sets is a characterization of all sensor sets

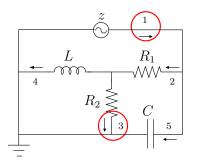
A small electrical circuit with 5 components that may fail



- 10 equations, 2 states, 5 faults, 1 known signal
- Possible measurements: currents and voltages

185 / 226

Analytical vs structural properties



Example run 2ObjectiveAchieve full isolabilityPossible measurementvoltages and currents

5 minimal solutions

 $\{i_1, i_3\}, \{i_1, i_4\}, \{i_2, i_3, i_5\}, \{i_2, i_4, i_5\}, \{i_3, i_4, i_5\}$

186 / 226

Outline

- Introduction
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
- Diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine

Analytical vs structural properties

- Structural analysis, applicable to a large class of models without details of parameter values etc.
- One price is that only *best-case* results are obtained
- Relations between analytical and structural results and properties an interesting, but challenging area
- Have not seen much research in this area

Book with a solid theoretical foundation in structural analysis

Murota, Kazuo. "*Matrices and matroids for systems analysis*". Springer, 2009.

189/226

Basic assumptions for structural analysis

- Structural rank sprank(A) is equal to the size of a maximum matching of the corresponding bipartite graph.
- $rank(A) \leq sprank(A)$
- Structural analysis can give wrong results when a matrix or a sub-matrix is rank deficient, i.e., rank(A) ≤ sprank(A).
- Example

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \overbrace{\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}}^{A=} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A_{str} = \begin{bmatrix} X & X \\ X & X \end{bmatrix}$$

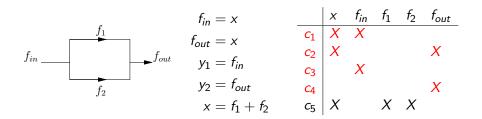
Structual matrix just-determined

Redundancy relation $y_1 - y_2 = 0$.

 \Rightarrow no redundancy

Wrong structural results because A is rank deficient:

$$rank(A) = 1 < 2 = sprank(A)$$



Now, a leak is structurally detectable!

For structural methods to be effective, do as little manipulation as possible. Modelica/Simulink is a quite good representation of models for structural analysis.

190 / 226

Exercise

Exercise

- a) Compute the fault isolability of the model below.
- b) Eliminate T in the model by using equation e₄. The resulting model with 6 equations is of course equivalent with the orignal model. Compute the fault isolability for this model and compare it with the isolability obtained in (a).

$$e_{1}: V = i(R + f_{R}) + L\frac{di}{dt} + K_{a}i\omega \qquad e_{5}: y_{i} = i + f_{i}$$

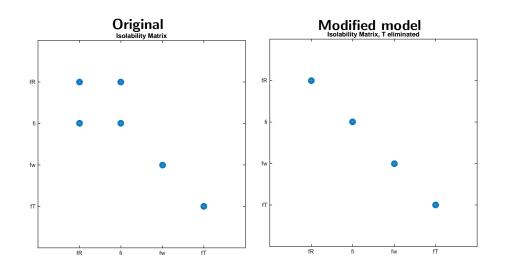
$$e_{2}: T_{m} = K_{a}i^{2} \qquad e_{6}: y_{\omega} = \omega + f_{\omega}$$

$$e_{3}: J\frac{d\omega}{dt} = T - (b + f_{b})\omega \qquad e_{7}: y_{T} = T + f_{T}$$

$$e_{4}: T = T_{m} - T_{l}$$

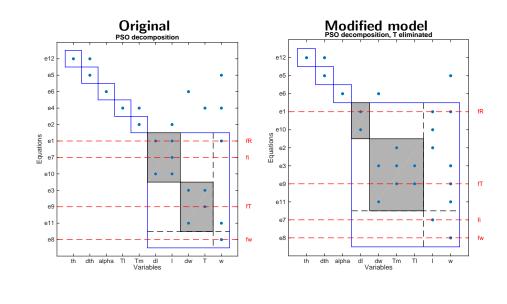
Isolability properties depends on model formulation

Isolability properties depends on model formulation



193 / 226

Use-case: an automotive engine —



Outline

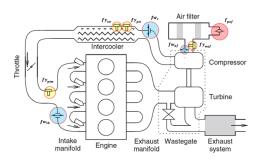
- Introduction
 - Decision Making
- Structural models and basic definitions
- Diagnosis system design
- Residual generation
 - Residual generation examples
- Diagnosability analysis
 - Differential index, causality and diagnosability analysis
- Sensor placement analysis
- Analytical vs structural properties
- Use-case: an automotive engine
 - Problem definition
 - Modelling
 - Isolability analysis and test selection
 - Evaluation on experimental data

Modelling

- How to model
- Simulink. Modelica. equations
- Analysis
 - Diagnosability
 - Observability
 - Possible tests
- Design
 - Residual generator design
 - Code generation
- Evaluation on test cell data

Sensors (8)

- Pressure (throttle, intake ambient)
- Temperature
- (throttle, ambient)
- Air mass flow
- Engine speed
- Throttle position
- Actuators (2)
 - Wastegate position

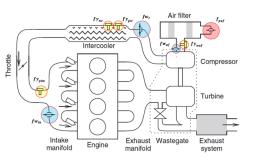


198 / 226

197/226

Case study - considered faults

- Clogged air filter
- Leakage
 - before compressor
 - after throttle
 - before intercooler
- Intake valve fault
- Increased turbine friction
- Sensor faults
 - Throttle position
 - air mass flow
 - intake manifold pressure
 - pressure before throttle
 - temperature before throttle



Modelling of automotive engines

960

Modelling diesel engines with a variable-geometry turbocharger and exhaust gas recirculation by optimization of model parameters for capturing non-linear system dynamics

I Wahlström* and L Eriksson

Department of Electrical Engineering, Linköping University, Linköping, Sweden

The manuscript was received on 12 February 2010 and was accepted after revision for publication on 4 January 2011.

DOI: 10.1177/0954407011398177

Abstract: A mean-value model of a diesel engine with a variable-geometry turbocharger (VGT) and exhaust gas recirculation (EGR) is developed, parameterized, and validated. The intended model applications are system analysis, simulation, and development of modelbased control systems. The goal is to construct a model that describes the gas flow dynamics based control systems. The goal is to construct a model that describes the $\frac{1}{200}/226$

Modelling of automotive engines, non-linear equations

(11)

(12)

(13)

(14)

(15)

Engine model

 $T_{e} =$

$$W_{\rm ei} = \frac{\eta_{\rm vol} \, p_{\rm im} \, n_{\rm e} \, V_{\rm d}}{120 \, R_{\rm a} \, T_{\rm im}}$$

where $p_{\rm im}$ and $T_{\rm im}$ are the pressure and temperature respectively in the intake manifold, n_e is the engine speed, and V_d is the displaced volume. The volumetric efficiency is in its turn modelled as

$$\eta_{\rm vol} = c_{\rm vol1} \sqrt{p_{\rm im}} + c_{\rm vol2} \sqrt{n_{\rm e}} + c_{\rm vol3}$$

The fuel mass flow $W_{\rm f}$ into the cylinders is controlled by u_{δ} , which gives the injected mass of fuel in milligrams per cycle and cylinder as

$$W_{\rm f} = \frac{10^{-6}}{120} \, u_{\delta} \, n_{\rm e} \, n_{\rm cyl}$$

where $n_{\rm cyl}$ is the number of cylinders. The mass flow W_{eo} out from the cylinder is given by the mass balance as

$$W_{\rm eo} = W_{\rm f} + W_{\rm ei}$$

The oxygen-to-fuel ratio λ_0 in the cylinder is defined as

$$\lambda_{\rm O} = \frac{W_{\rm ei} X_{\rm Oim}}{W_{\rm f} ({\rm O}/{\rm F})_{\rm s}}$$

Plot model structure

>> model.PlotModel();

the initialization is that the cylinder mass flow model has a mean absolute relative error of 0.9 per cent and a maximum absolute relative error of 2.5 per cent. The parameters are then tuned according to the method in section 8.1.

4.2 Exhaust manifold temperature

The exhaust manifold temperature model consists of a model for the cylinder-out temperature and a model for the heat losses in the exhaust pipes.

4.2.1 Cylinder-out temperature

The cylinder-out temperature T_e is modelled in the same way as in reference [23]. This approach is based upon ideal-gas Seliger cycle (or limited pressure cycle [1]) calculations that give the cylinderout temperature as

$$= \eta_{sc} \Pi_{c}^{(-1)\gamma_{a}} r_{c}^{(-\gamma_{a}} x_{p}^{1)\gamma_{a}-1} \\ \times \left(q_{in} \left(\frac{1 - x_{cv}}{c_{pa}} + \frac{x_{cv}}{c_{Va}} \right) + T_{1} r_{c}^{\gamma_{a}-1} \right)$$
(17)

where η_{sc} is a compensation factor for non-ideal cycles and x_{cy} the ratio of fuel consumed during constant-volume combustion. The rest of the fuel, i.e. $(1 - x_{cv})$ is used during constant-pressure com-

201/226

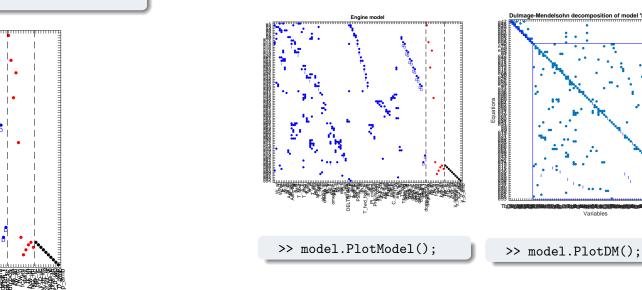
Check model properties

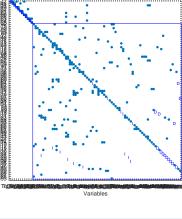
Check model for problems

- Number of known/unknown/fault variables
- Are all signals included in the model
- Degree of redundancy
- Do the model have underdetermined parts

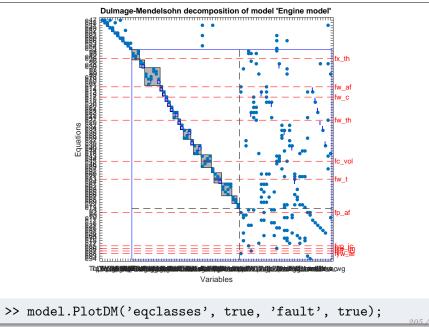
>> model.Lint(): >> model Model: Engine model Type: Symbolic, dynamic Variables and equations 90 unknown variables 10 known variables 11 fault variables 94 equations, including 14 differential constraints Degree of redundancy: 4 Model validation finished with 0 errors and 0 warnings.

Dulmage-Mendelsohn decomposition

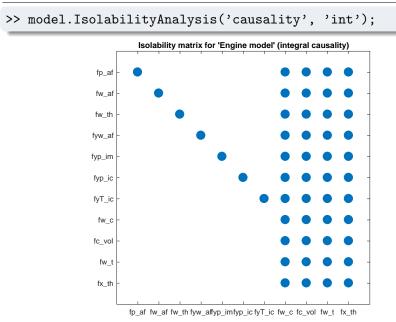




Dulmage-Mendelsohn with equivalence classes

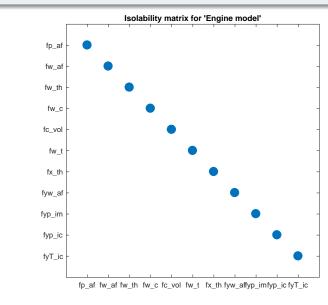


Isolability analysis – integral causality



Isolability analysis

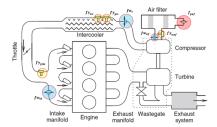
>> model.IsolabilityAnalysis();



206 / 226

Redundancy & testable sub-models in the engine model

- MSO set-minimal redundant set
- Redundancy 4
- A $r = y \hat{y}$ would give 4 residuals
- Due to the turbine feedback, many more possibilities exists
- In the model: 4496 MSO sets
 - all observable
 - 206 with low index (4.6%)
- Choose wisely



Candidates

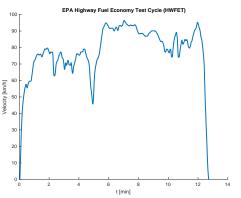
- Each MSO with n equations, n possible residual generators
 - 4,496 MSO sets: 343,099 residual generators
 - 206 low-index sets: 728 candidates (208 realizable)
- $\,$ $\,$ Do not need that many to isolate the faults \sim number of faults

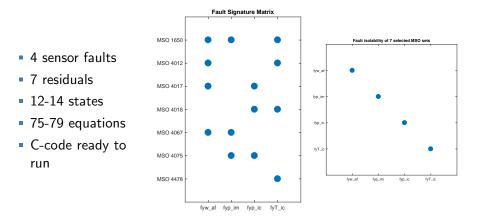
Our strategy

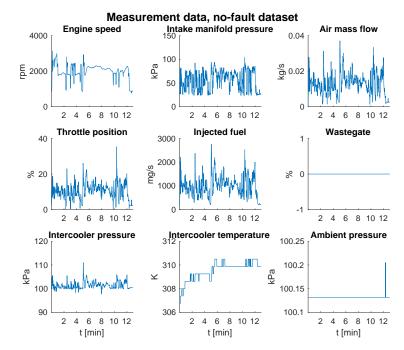
- If models were ideal, all equally good
- Here: make test selection based on performance on measured data
- C-code generation essential for evaluation, Matlas just too slow
- Simple approach based on Kullback-Leibler divergences (no details here, ask me)
- Restriction to 4 sensor faults gives 7 selected residuals

209 / 226

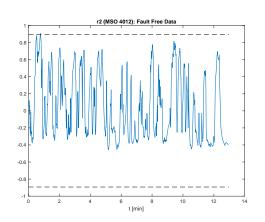
- Volvo production engine
- EPA HWFET cycle translated into load cycle for engine (rpm/torque)
- 5 data sets (here):
 - Fault free
 - Sensor faults
 - Intake pressure
 - Air-flow sensor
 - Pressure after intercooler
 - Temperature after intercooler

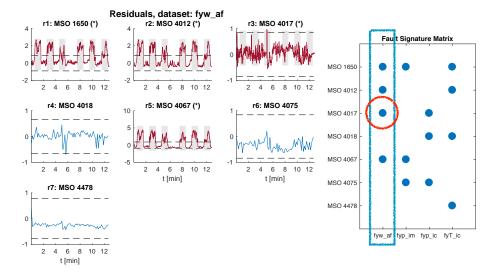




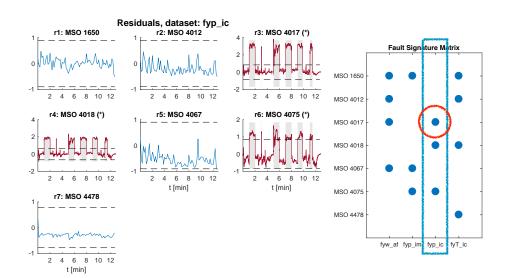


- Sampling rate 1 kHz
- Data set 12 minutes with 10 measurement signals
- Execution takes about 0.5 sec on this computer (\approx 1400 times real-time)
- Simple thresholding based on false-alarm rate on no-fault data





213 / 226

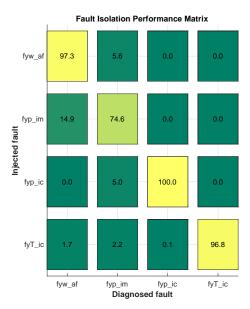


Fault isolation performance

Performance measure

$P(f_i \text{ diagnosis}|f_j)$

- Ideally diagonal
- This non-tuned version works quite well
- Some difficulty isolating a fault in the air-mass flow sensor (fyw_af) from a fault in the intake manifold pressure sensor (fyp_im)



- Automated (or close to)
 - Modelling (structural and analytical)
 - Analysis of diagnosability and simulation properties
 - Test selection
 - Code generation
- The designed residuals are nowhere near optimal
- Gives a candidate solution; suitable for an engineer to fine-tune (or develop more advanced methods)
- Important that code is readable, understandable

- Concluding remarks -

217/226

Some take home messages

Structural models

- Coarse models that do not need paramerer values etc.
- Can be obtained early in the design process
- Graph theory; analysis of large models with no numerical issues
- Best-case results

Analysis

- Find submodels for detector design
- Not just $y \hat{y}$, many more possibilities
- Diagnosability, Sensor placement, . . .

$Residual \ generation$

- Structural analysis supports code generation for residual generators
- Sequential residual generators based on matchings
- Observer based residual generators

— Thanks for your attention! —

Structural methods for analysis and design of large-scale diagnosis systems

> Erik Frisk and Mattias Krysander {erik.frisk,mattias.krysander}@liu.se

> > Dept. Electrical Engineering Vehicular Systems Linköping University Sweden

> > > July 8, 2017

221 / 226

$Some \ publications \ on \ structural \ analysis \ from \ our \ group$

Sensor placement and diagnosability analysis Mattias Krysander and Erik Frisk. Sensor placement for fault diagnosis. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(6):1398–1410, 2008. Erik Frisk, Anibal Bregon, Jan Åslund, Mattias Krysander, Belarmino Pulido, and Gautam Biswas. Diagnosability analysis considering causal interpretations for differential constraints. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 42(5):1216–1229, September 2012.

Overdetermined equations, MSO, MTES

- Mattias Krysander, Jan Åslund, and Mattias Nyberg.
 An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis.
 IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(1), 2008.
- Mattias Krysander, Jan Åslund, and Erik Frisk.
 A structural algorithm for finding testable sub-models and multiple fault isolability analysis.
 21st International Workshop on Principles of Diagnosis (DX-10), Portland, Oregon, USA, 2010.

222 / 220

$Publications\ on\ Structural\ Analysis\ from\ our\ group$

Residual generation supported by structural analysis

- Erik Frisk, Mattias Krysander, and Daniel Jung.
 A Toolbox for Analysis and Design of Model Based Diagnosis Systems for Large Scale Models.
 IFAC World Congress, 2017.
- Erik Frisk, Mattias Krysander, and Daniel Jung.
 Analysis and Design of Diagnosis Systems Based on the Structural Differential Index.
 IFAC World Congress, 2017.

Residual generation supported by structural analysis

Carl Svärd and Mattias Nyberg. Residual generators for fault diagnosis using computation sequences with mixed causality applied to automotive systems.

IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 40(6):1310–1328, 2010.

Carl Svärd, Mattias Nyberg, and Erik Frisk.
 Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application.
 IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(6):1354–1369, 2013.

Publications on Structural Analysis from our group

Application studies

- Dilek Dustegör, Erik Frisk, Vincent Coquempot, Mattias Krysander, and Marcel Staroswiecki.
 Structural analysis of fault isolability in the DAMADICS benchmark. Control Engineering Practice, 14(6):597–608, 2006.
- Carl Svärd and Mattias Nyberg. Automated design of an FDI-system for the wind turbine benchmark. Journal of Control Science and Engineering, 2012, 2012.
- Carl Svärd, Mattias Nyberg, Erik Frisk, and Mattias Krysander. Automotive engine FDI by application of an automated model-based and data-driven design methodology. *Control Engineering Practice*, 21(4):455–472, 2013.

225 / 226