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Supervision of an automotive engine
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Analysis and design of large-scale diagnosis systems

Definition (Large scale)

Systems and models that can not be managed by hand; that need
computational support.

We do not mean: distributed diagnosis, big data, machine learning,
classifiers, and other exciting fields

Scope of tutorial

= Describe techniques suitable for large scale, non-linear, models based
on structural analysis

= Support different stages of diagnosis systems design

= Provide a theoretical foundation
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= Model in Modelica
= Uses standard component libraries
= 1,000-10,000 equations
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The basic idea

faults f(¢)

observation y(t) residual r(t)
actuators wu(t) Q

~ Model prediction §(t)
&= g(z,u)
y = h(z,u)

Real applications not that simple

= Models are complex, non-linear, includes lookup-tables, ...

= Fault isolation, not only fault detection

= Models are uncertain, which, by definition is not modeled; merging
models with data?




Methods for fault diagnosis

x = Ax + Bu x = g(x,u)
y=C y = h(x)

There are many published techniques, elegant and powerful, to address
fault diagnosis problems based on, e.g., state-space models like above.

They might involve, more or less, involved mathematics and formula
manipulation.

This tutorial covers techniques that are suitable for large systems where
involved hand-manipulation of equations is not an option
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Objectives

= Understand fundamental methods in structural analysis for fault
diagnosis

= Understand possibilities and limitations of the techniques

= Introduce sample computational tools

= Tutorial not intended as a course in the fundamentals of structural
analysis, our objective has been to make the presentation accessible
even without a background in structural analysis

= Does not include all approaches for structural analysis in fault
diagnosis, e.g., bond graphs and directed graph representations are

not covered.
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Main parts of the tutorial

@ Formally introduce structural models and fundamental diagnosis
definitions
@ Derive algorithms for design of residual generators

= Introduction of fundamental graph-theoretical tools, e.g.,
Dulmage-Mendelsohn decomposition of bi-partite graphs

= Finding all minimal submodels with redundancy

= Generating residuals based on submodels with redundancy

@ Derive algorithms for analysis of models and diagnosis systems

= Determination of fault isolability properties of a model
= Determination of fault isolability properties of a diagnosis system
- Finding sensor locations for fault diagnosis
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Software

Fault Diagnosis Toolbox for Matlab

Some key features

= Structural analysis of large-scale DAE models

= Analysis
« Find submodels with redundancy (MSO/MTES)
- Diagnosability analysis of models and diagnosis systems
= Sensor placement analysis

= Code generation for residual generators

« based on matchings (ARRs)
- based on observers
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Fault Diagnosis Toolbox Download & Install Tutorials Use Case References About

S Fault Diagnosis Toolbox
Fault Diagnosis Toolbox is a Matlab toolbox for analysis and
design of fault diagnosis systems for dynamic systems,
Erik Frisk primarily described by differential-algebraic equations. Key
Associate professor at features of the toolbox are extensive support for structural
the Department of analysis of large-scale dynamic models, fault isolability
Electrical Engineering, analysis, sensor placement analysis, and code generation in
Linkdping University. C/C++ and Matlab.

Q Linkdping, Sweden
B Email

For a quick introduction, see the use case where an industrial
size example, an automotive engine, is analyzed, C-code for
residual generators is generated, and the resulting diagnosis system is evaluated on
test-cell measurements from our engine laboratory.

faultdiagnosistoolbox.github.io )

18 /226

Ezxample: Ideal electric motor model

@ R L
Tm T,
® o) =

a- 14D

e1:V:iR(1+fR)+L%+Kaiw e T=Tn—T e :yi=i+f

‘323-,-m:Kai2 651E:w eg:yw:w—i-fw
dw dw
%JE—T—bw 66.E—a egyT—T+fT

Model summary (9 equations)

Known variables(4): V, yi, v, y1
Unknown variables(7): i, 0, w, «, T, T, T}, (i, w, & dynamic)
Fault variables(4): fg, f;, f,, fr

Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators J
x = g(u) rn=y —g(u)
yi=x ro=y>— g(u)
Y2 =X RB=Yy2—n
Y3 =X rs =y3 — g(u)
I =Y3—Wn
e =Y3—)2

= Number of possibilities grows exponentially (here (5) minimal
combinations)

= Not just y — y

= |s this illustration relevant for more general cases?
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Structural model

Structural model

A structural model only models that variables are related!

Example relating variables: V/, i, w
: di .
e1: V=iR(1+ fR)+Ld—;+Kalw
Unknown variables

i 0w o T Tn Ti|lfa £ £ |V yi y, yr
e | X X | X | X

Coarse model description, no parameters or analytical expressions

Can be obtained early in design process with little engineering effort

Large-scale model analysis possible using graph theoretical tools

Very useful!

Main drawback: Only best case results! |
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faultdiagnosistoolbox.github.io

Structural model of the electric motor

el

e2

e3

ed

e5

e6

e7

es

e9

Electric motor

What can y

|
ou db with this!simple
piece of ir*ncormation?I

alpha

= Known variables(4): V, yi, v, ¥y1

= Unknown variables(7): i, 6, w, o, T, Tp,, Ty, (i, w, 6 dynamic)

= Fault variables(4): fg, f;, f,, fr

Sensor placement - which sensors to add?
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Q: Which sensors should we add to achieve full isolability?

Choose among {i,0,w,«, T, Tr,, T;}. Minimal sets of sensors that
achieves full isolability are

S ={i}
So={Tm}
S3={T}

Let us add Si, a second sensor measuring i (one current sensor already

used),

Yi2 =

i
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Structural isolability analysis of model

Isolability Matrix T T
e5F . .
e6 . .
R [ ] @
ed . . . .
e2r . 3
fi [ ) ® 2
s I
=]
gel 7777777777 = — 1T 71 R
=
iy |
e ——— = — = — — — —— - —+ -7 fi
fw [ J
e3fr . .
o - ——— = — — — — i — == fT
T ® l _
55»7777777777777T‘74 fw
L L L L L L
. . . L th apha T Tm | T w
R fi fw T Variables

Nontrivial result

fr and f; can not be isolated from each other, unique isolation of £, and fr
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Create residuals to detect and isolate faults

Q: Which equations can be used to create residuals? |

e1:V:iR(1+fR)+L%+Kaiw e T=Tyn—T e:yi=i+f

. do
e Tm= Kyi° e5:E:w es Yo=w+Tf,
dw dw
J— =T —b [ . I S
€10 :Yip =1

Example, equations {e3, es,e9} = {Jw =T — bw, y, = w,y7 = T} has
redundancy! 3 equations, 2 unknown variables (w and T)

r=Jy,+ by, —yr

Structural redundancy

Determine redundancy by counting equations and unknown variables!

20 /226



Create residuals to detect and isolate faults Fault signature matriz and isolability for MSOs

Q: Which equations can be used to create residuals? | Q: Which isolability is given by the 6 MSOs/candidate residual generators?J
Fault Signature Matrix Iso\as)ility matrix f?r set of ARR§ in 'Electric m'olor'
Analysis shows that there are 6 minimal sets of equations with redundancy,
called MSO sets. Three are usoL o
R @
My ={yi=1iyi2=1i} =>n=yi—Yi2 = °°
M2:{Yw:W7YT:T,Jw=T—bw} #rzzyT—Jyw—bw Ms03 ® PY fi ®
d . . . . MSO4 :
Mz ={V =Lpi+iR+ Ksiw, =n=V—Lyi+y R+ Kayiyo ©or e ol °
yw — w,y, — ,} MSO5 [ ] °
M4 = ... MSO6 [ ] [ ] [ ] m .
Ms=...
M " " e ™ " ® i w r
6 — .-
If | could design 6 residuals based on the MSOs = full isolability |
21 /226 22 /226
Test selection Code generation supported by structural analysis
Q: Do we need all 6 residuals? No, only 4 J
Fault Signature Matrix Fault Signature Matrix, selected tests
Q: Can we automatically generate code for residual generator?
Yy g g
MSO1 | ® MSO1 ® . .
For example, MSO M> Automatic generation of code
Msozr @ @ Msoz ° ° . % Initialize state variables
= = T = T _— °
{_)/w WhYT ’Jw bw} w = state.w;
MSO3 | ® ® MSO3 ® ® i i .
- has redundancy and |'t is possible to % Residual generator body
wsosl e e e M504 {————————— generate code _for residual T = yT; % e9
generator, equivalent to w = yw; % e8
Msos ° @ MSOs @ ® ) dw = ApproxDiff (w,state.w,Ts); % ell
r=Jyo+byo —yr r2 = Jxdw+bw-T; % e3
MSO6 |- ® ® ® mMso¢ p—m—m—m—mp—mmm———
fR fi fw fT ﬂ‘? fi T
Fault Fault
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Design process atded by structural analysis

Generator Test Selection L
: - ) Generation
Analysis

All these topics will be covered in the tutorial |

Presentation biased to our own work J
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Differential index

Definition

From simulation of differential-algebraic equations (there is a formal
definition): “how far from an ODE is a set of equations’?

= Index 0: all variables are dynamic
x = g(x)
= Index 1: dynamic variables (x;) and algebraic variables (x2)

x1 = gi(x1, x2)
0=g(x1,x2), O0go/0xz full rank

= Index > 1: dynamic variables (x;) and algebraic variables (x2)

x1 = gi(x1, x2)

0 = ga(x1)
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Some history

50’s In mathematics, graph theory. A. Dulmage and
N. Mendelsohn, "“Covering of bi-partite graphs”
60°s-70’s Structure analysis and decomposition of large systems,
e.g., C.T. Lin, “Structural controllability’ (AC-1974)
90’s- Structural analysis for fault diagnosis, first introduced by
M. Staroswiecki and P. Declerck. After that, thriving

research area in Al and Automatic Control research
communities.
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Differential index and diagnosis

Why is this relevant here? models are often state-space/Simulink models!

x = g(x, v)
y = h(Xv U)
ARRs, Possible conflicts, MSO sets, ...: submodels!

x1 = g(x1, %2, u)

y1 = hi(x1, x2, u)

Appears naturally in a diagnosis context!

| will return to this topic briefly in diagnosability analysis and residual
generation but do not have the time to get detailed.
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Differential index and diagnosis

Take home message

= Low index problems (0/1):
« Easy to simulate (basic simulink models are always low-index)
» State-space techniques directly applicable, e.g., state-observers
= High-index problems (> 1):
» Hard to simulate accurately, difficult to diagnose (often very)
» Corresponds to differentiating, numerically, signals
= Observer techniques not directly applicable

Decision making under noise
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= Thresholds often set based on (a small) false alarm probability
= Residual over threshold = fault with good confidence
= Residual under threshold = ?
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o

rl: MSO 1650 (*)

Residuals, dataset: fyw_af

r2: MSO 4012 (¥)

r3: MSO 4017 ()

2 4 6 8 10 12

2 4 6 8 10 12

2 4 6 8 10 12

r4: MSO 4018 10 r5: MSO 4067 (*) r6: MSO 4075
| 5
T T M il v
J‘L off i) I A WW‘, M
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
t [min] t [min]

r7: MSO 4478

2 4 6 8 10 12

t [min]

MSO 1650 -

MSO 4012 -

MSO 4017 |

MSO 4018 -

MSO 4067 -

MSO 4075 |

MSO 4478 |
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A word on fault isolation and exoneration

' hOf f hofh B fa
{11 0 0 O

Mi|10 0 1 1
= L1 1 0 1

My|1 0 1 O
M3z |1 1 0 1 100 10
3 f,10 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are

different?
A: We do not assume exoneration (= ideal residual response), exoneration
is a term from consistency based diagnosis, here isolation by column

matching

v

CBD diagnosis

Minimal consistency based diagnoses with

n>J=~forf = no exoneration assumption:
Dy ={f}, D> = {1, 1}

n>J="forf
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Consistency based fault isolation or column matching

= Column matching common in FDI litterature
- bad diagnoses in case of missed detections
= need to care about order and timing of alarms
« inhibation of monitors/residual generators

= With a consistency based approach

= none of the above
= strong theoretical background in Al

Cordier, M-0O., et al. " Conflicts versus analytical redundancy relations: a
comparative analysis of the model based diagnosis approach from the
artificial intelligence and automatic control perspectives’ |EEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
34.5 (2004): 2163-2177.
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Fault 1solation and exoneration

Fault 3 occurs at t = 2 sec.

A K B £
My|10 0 1 1
M| 1 0 1 0
Mz |1 1 0 1

Diagnosis result
No exoneration assumption

0 — 2.5 : No fault
25—6:fz0rfy
6—:f3

With exoneration assumption

0 — 2.5 : No fault
2.5 — 6 : Unknown
6—: 13
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Outline

@ Structural models and basic definitions

A structural model - the nominal model
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e .

€

€3

€4

€5

€6

d
V=iR+LZ + Kiw

dt
T = Kayi?
dw
J—=T—-b>b
dt v
T=Tn—T
tYi=i
Yo =W
yr=T

Biadjacency matrix:

€1

€2

€3

€4

€5

(3 w

T _Tn_ T
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A structural model - the nominal model

©

R L

h u

Tm
Kaw #@I
om0

e1:V:iR+Lﬂ+Kaiw

dt
e Tm= Kyi?
dw

J— =T —b
€3 dt W
e: T =Tn—T,
ey =1
€ Y =w
eriyr=1T

Variables types:
= Unknown variables:
hw, T, Ty, Ty
= Known variables: sensor
values, known input signals:
V., Yii Yo YT
= Known parameter values:
R, L K J, b
Common mistakes:

= Consider i as a known
variable since it is measured.

= Consider a variable that can
be estimated using the
model, i.e., T,,, to be a
known variable.
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A structural model with fault information

Fault influence can be included in the model

€1 .

€3

€y .

€5

€6

= by fault signals

= by equation assumptions/supports

di .1 1 I
V = i(R+ ) + L5+ Kaiw Jn—=a
|
L T = Kai? “ i
I T (bt fie |
. E— ( b)w |
T=Tn—T i
Ly =i+ fi —es l
|
Yo =wtfy fw—’ee: :
ryr=T+fr : :
fr—er| |
e 1




Structural representation of dynamic systems Dynamics - not distinguish derivatives

Structural representation of dynamic systems can be done as follows:
i w T Twm T

@ Consider x and x to be structurally the same variable. . [T T T T T " [
. . . ) di ) €1 |
@ Consider x and x to be separate variables. eV =IiR+ L7 + K,iw !
€9 |
e Tm= Kyi° :
dX1 ’ | |
L :gl(xlax27zv f) X1 :gl(xlax27zv f) dw €31 |

dt €3 : JE =T — bw :

O:g2(XlaX2)Za f) = Ong(Xl,sza f) eq!

e: T=Tyn—T, l
dX1 o . |
Pt & 1 yi =1 €s !
. . . € Yw =W I :
In this case dynamics is usually separated from the algebraic part by . T €6 | |
introducing a variable representing the derivatives € YT = | |
€7 |
,  dx o bt :

X = gt = Compact description
= Choice depend on purpose and objective.
41/226 12 /226
Dynamaics - distinguish derivatives Structural properties interesting for diagnosis

e1: V=IiR+ L'+ Kjiw

0 Ty = K,i2 § i w |;'L,J>,n,;l;,ﬁ,4,:
, ! Properties interesting both for residual generation, fault detectability and

e3:Juw =T — bw e i . . i

T T L .' isolability analysis.
€4 = Im— 1 el )
ey =i o [ ] i Let M = {e1, e,...,en} be a set of equations.
5 L Yi = ' !
€ Y =W ‘*“D i Basic questions answered by structural analysis
e7 yr=T “i |:| ! @ Can a residual generator be derived from M 7

di | I:' | or equivalently can the consistency of M be checked?
r_ i

i = dt dl.- .-I @ Which faults are expected to influence the residual?
dw L
r_

dr:w = ar Structural results give generic answers. We will come back to this later.

= Add differential constraints
= Used for computing sequential residual generators
= Differential /integral causality and index properties 13/ 226 /

Ny
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Testable equation set?

= |s it possible to compute a residual from these equations?

d
engsz—":erw T i w
6’5'i:y' €3 X X
' ' €5 X
€W =Y, o X
"
e1:V—iR—Ld—;—Kaiw:0 el X X

= Yes! The values of w, i/, and T can be computed using equations &g,
es, and e3 respectively. Then there is an additional equation e; a
so-called redundant equation that can be used for residual generation

b

V — yiR
Vil + E g

- Kayi}/w =0
= Compute the residual
d .
r=V-—-yR+ L% — Kayiyew

and compare if it is close to 0. 15/ 226

Structural analysis provides the same information

= Model with fault:

d

e3ZT=J7f+(b+fb)w T | w

: X X | f

ti=yi—fi €3 b
e €5 X f;
e w= Yo - MK

di

el:V—i(R+fR)—LFL—Kaiw:Oel X X |fr

= Structural analysis provides the following useful diagnosis information:
- residual from {eq, es, e}
- sensitive to {f;, f,, fr}

= Let's formalize the structural reasoning!
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Fault sensitivity of the residual?

= Model with fault:

d
e3:T:Jd—C:+(b—|-fb)w T | w‘
L €3 X X fb
es i =y —f; . X £
. 3
o=y f i B
di
e1:V—i(R—|—fR)—Ld—;—Kaiw:061 X X|fr
= Which faults could case the residual to be non-zero?
dv:
r=V - yiR+ LY — Ky, =
dt
_ d
= yifr + fi(Kafy — R — yw — fr) — LE — Kayifs,

= Sensitive to all faults except fp.
= Not surprising since e3 was not used in the derivation of the residual!
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Matching

= A matching in a bipartite graph is a pairing of nodes in the two sets.

= Formally: set of edges with no common nodes.

= A matching with maximum cardinality is a maximal matching.

= Diagnosis related interpretation: which variable is computed from
which equation

T i w
€3 X X fb
€5 X ﬁ
€6 X f;,_,
€1 X X fR

€3 m—
€5 %
€6 w
. /
€3
€6 /-|—> T
Y.
r
. o
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Dulmage-Mendelsohn decomposition

Xo X, Xy Xno1 Xy Xeo

M~ @

MO

Matlab command: dmperm

= M™ is the overdetermined part of model M.
= MO is the exactly determined part of model M.
= M~ is the underdetermined part of model M.

Detectable faults

T|i w
e | X X | 1y
€5 X f,
€6 X ﬂu
€1 X X fR

M+ = {61,65,e6}
Xt = {i,w}
Faults in M™: {f £, fr}

Mt = {61,63,65,66,37}
X+ — {’a T,W}
Faults in M*: {fg, i, fp, fr, f,}

The overdetermined part contains all redundancy.

Structurally detectable fault

Fault f is structurally detectable in M if f enters in M
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Dulmage-Mendelsohn Decomposition

Find a maximal matching
Rearrange rows and columns

Identify the under-, just-, and over-determined parts by backtracking

o000

Identify the block decomposition of the just-determined part. Erik will
explain later.

©

Dulmage-Mendelsohn decomposition can be done very fast for large
models.

50/ 226

Basic definitions - degree of redundancy

Degree of redundancy

Let M be a set of equations in the unknowns X, then

p(M) = |MT| — | X7

L Tw i T w
e |
. I
T|i w o !
e3 | X X | fp fR_’(’ll__ __I:
€5 X f, | 1
fi —es1
€6 X fw H
—eq '
e X X|fr 4 o !
fT—>P7: :
1 1
M* = {e, es, €5} fo—col !
Xt={iw}y L T
{i,wh M* = {e1, e3, 65,65, €7}

PM)=3-2=1 X+ = {i, T,w}

o(M)=5-3=2
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Eramples - electrical motor

Basic definitions - overdetermined equation sets
Relation between overdetermined part and SO, MSO, and PSO sets.

T| i w
€3 X X fb
Structurally Overdetermined (SO) . X 3
M is SO if o(M) > 0 €6 X |
€1 X X fR

Minimally Structurally Overdetermined (MSO)
An SO set M is an MSQO if no proper subset of M is SO.

* M ={e1,es, 65,6} is SO since

Proper Structurally Overdetermined (PSO) o(M)=|MT|—|XT|=3-2=1>0

A residual can be computed but it is not sensitive to all faults in M.
= Mt = {e1, es5,66} is SO but also
» PSO since the redundancy decreases if any equation is removed
= MSO since there is no SO subset.

MSO and PSO sets seem to be interesting!

An SO set M is PSO if ¢(E) < ¢(M) for all proper subsets E C M
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Ezxample - sensor redundancy Examples - electrical motor, MSO sets and tests
di CF
{e,e} n=y1-y e1:V=iR+LZ 4 Kyiw er:T=yr

ey =x fer.es) o= y1 dt do 1 .

eIy =x L RENTY e2:Tm:Kai2 %E:j(T_bw)

ey = x {e,e3} =y —y3 du R

3-Y3 = A Rahad _ € N =Y,—w

{617®7e3}:r4:r%+r§ e3.Jdt T — bw w
€4 . T = Tm — T/ ~
= {e1, e, e3} is Structurally Overdetermined (SO) but not MSO since s yi=i er: T =yr
= {e1, e}, {e1,e3}, {e2, &3} all are MSO:s B do 1 4 R
: : € 1 Y =W e3: — = —=(T — bd)
= All above equation sets are PSO since degree of redundancy decreases dt J
if an element is removed. eriyr =T di 1 »
e = Z(V_ IR — K,i&d)
Properties MSO sets and possible tests: t ¢
= M PSO set < residual from M sensitive to all faults in M . S:B=Yi—i
e 0=
= MSO sets are PSO sets with structural redundancy 1. 0 Jn ywl fo f, £ £, fr
= MSO sets are sensitive to few faults, which is good for fault isolation. e : ar _ —(V - R — Kaf@) n| X X X
= MSO sets are candidates for residual generation dt 1L . r X X X
Son=Yi—d I3 X X X X 56 /226
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Conclusions so far

Structural properties:

Properties
= M PSO set & residual from M sensitive to all faults in M

= MSO sets are PSO sets with structural redundancy 1.

= MSO sets are sensitive to few faults which is good for fault isolation.
= MSO sets are candidates for residual generation

MSO and PSO models characterize model redundancy, but faults are not

taken into account.

Next we will take faults into account.
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MSO sets
There are 8 MSO sets in the model
Equations Faults

MSO; | {es3, s, €6} {fa, f5}
MSO, | {e3, 4,66} {,f5}
MSO3 {(—3‘47 65} {f3, ﬁl}
MSO, | {e1,e2, €3, 66} | {f1, 2, f5}
MSOs | {e1,e2,e3,e5} | {f1, P2, fa}
MSOs | {e1, e, e3,e4} | {1, 2, 3}
MSO; | {e1, e, 65,65} | {f1, P2, fa, 15}
MSOs | {e1, e, e4,66} | {1, 2,13, f5}

Erxample: A state-space model

To illustrate the ideas | will consider the following small state-space model
with 3 states, 3 measurements, and 5 faults:

Ty T2 I3

er : >:<1:—X1+U+f1 er | X
e : >_<2=X1*2X2+X3+f2 e | X X X
€3 . X3:X2—3X3 e X X
ea: yi=x+f 5 X
s y=xtf e
&6 y3=x3t+fs €5 X

€g X

X; represent the unknown variables, u and y; the known variables, and f;

the faults to be monitored.

First observation: All MSO sets are not equally ”good”

Tests sensitive to few faults give more precise isolation.

Equations Faults
MSOl {(:‘3,65,66} {f4,f—5}
MSO; | {es3, e4, €6} {f,fs}
MSO3 {64,65} {f},,ﬁ;}
MSO, | {e1,e2, 3,66} | {f1, 2, f5}
MSOs | {e1, e, e3,e5} | {1, 2, fa}
MSOs | {e1, e, €3, €1} | {1, 2,3}
MSO; | {e1, e, 65,6} | {f1, o, fa, 15}
MSOg | {e1, e, e4,65} | {f1, P2, F3, 15}

Faults(MSO; ), Faults(MSOs), Faults(MSOs) C Faults(MSO7)

In the definitions of redundancy, SO, MSO, and PSO we only considered
equations and unknown variables.

But who cares about equations?
We are mainly interested in faults!
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Faults(MSO,), Faults(MSOs), Faults(MSOg) C Faults(MSOs)

MSO; and MSOg are not minimal with respect to fault sensitivity I
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Second observation: Sometimes there are better test sets

A residual generator based on the equations in MSO; will be sensitive to
the faults:

Faults({e1, e, €5, 66}) = {f1, 2, f4, f5 }
Adding equation e3 does not change the fault sensitivity:

FaU/tS( {61,62,63,65,66} ) - {ﬂaféaﬁ]-afé}

PSO set with redundancy 2

There exists a PSO set larger than MSO; with the same fault sensitivity. l

61 /226

Questions

Third observation: There are too many MSO sets

Consider the following model of a Scania truck engine
Original model:

T = 532 equations

EGR
Valve‘)@ = 528 unknOWﬂS
iction

Wr.rb
turbine

— B L B <o)« 4 redundant eq.
T o

= 8 states

Inlet
manifold

Pin» Tin

P Ton Pegr Toy
r. ™ 3 actuator faults

;D[ooooou—m

= 4 sensor faults

compressor

Wem

There are 1436 MSO sets in this model.

There are too many MSO sets to handle in practice and we have to find a
way to sort out which sets to use for residual generator design.
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Questions

Equations Faults
MSOl {e3,e5,e6} {f4,f5}
MSO; | {e3, €4, 66} {f,f5}
MSO3 {64765} {fé,ﬁl}
MSOy | {e1, e, €3,66} | {f1, P2, 5}
MSOs | {e1,e2,e3,e5} | {f1, P2, fa}
MSOs | {e1, €2, €3,e4} | {f, 2, 13}
MSO; | {e1, e, 65,66} | {fi, P2, fa, f5}
MSOg | {e1,e2,e4,e6} | {f1, 2, 3,5}

What distinguish the first 6 MSO sets?
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Equations Faults
MSO; | {e3, €5, 66} {fs, 15}
MSO; | {es3, e4, €6} {f,fs}
MSOs | {es, es} {f,fa}
MSO, | {e1,e2,e3,66} | {f1, 2, f5}
MSOs | {e1,e2,e3,e5} | {f1, P2, fa}
MSOg | {e1,e2,e3,e4} | {f1, P2, 13}
MSO; | {e1, e, 65,66} | {fi, P, fa, f5}
MSOg | {e1,e2,e4,e6} | {f1, P2, 3,5}

Is it always MSO sets we

are looking for?
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Fundamental questions

= Which fault sensitivities are possible?

= For a given possible fault sensitivity, which sub-model is the best to
use?
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Answers

Definition (Minimal Test Support)

Given a model, a test support is a minimal test support (MTS) if no
proper subset is a test support.

Definition (Minimal Test Equation Support)

A TES M is a minimal TES (MTES) if there exists no subset of M that is
a TES.

v
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Answers

Let F(M) denote the set of faults included in M.

Definition (Test Support)

Given a model M and a set of faults F, a non-empty subset of faults
¢ C F is a test support if there exists a PSO set M C M such that
F(M) = ¢.

Definition (Test Equation Support)

An equation set M is a Test Equation Support (TES) if
@ M is a PSO set,
@ F(M) # 0, and
@ for any M" 2 M where M’ is a PSO set it holds that F(M') 2 F(M).

v

MSQO; is not a TES since

Faults({e1, €2, 5, €6}) = Faults({e1, e2, €3, 65,66}) = {1, o, fa, f5 }
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Example

Equations Faults
MSO; | {e3,es5, 66} {fa, f5}
MSO; | {e3, €4, 66} {,f5}
MSO3 {64,65} {fé,ﬁ;}
MSOy | {e1, €2, €3,66} | {f1, 2,15}
MSOs | {e1, e, e3,e5} | {fi, o, fa}
MSOg | {e1, e, e3,e4} | {f1, P2, 13}
MSO; | {e1, e, es5,e5} | {fi, o, fa, f5}
MSOg | {e1, e, es4, 66} | {f1, P2, 3,5}

= The MTES:s are the first 6 MSO sets. (fewer MTESs than MSOs)
= The 2 last not even a TES.

= The TES corresponding to last TS:s are {e1, e2, €3, €5, €5},
{e1, €, €3, €4, €6}
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Example - electrical motor

el

el (o fo £ £, fr
fb—>in ' rn X X X
fr—er! i r X X X
P | il X X X X

If sensor y,, could not fail, then

All equations in the overdeter- MSO 3 will not be an MTES.

mined part contain faults so the

MTES:s are the same as the MSO
sets.
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Summary

Consider a model M with faults F.

= ( C Fisa TS & there is a residual sensitive to the faults in

= The TES corresponding to ( can easliy be computed as

(M\ eq(F\ ()"

= typically MSO sets.
= fewer than MSO sets.

= sensitive to minimal sets of faults.

= sufficient and necessary for maximum multiple fault isolability

= candidates for deriving residuals
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Outline

@ Diagnosis system design
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Design system design supported by structural methods

B -

enerator est Selection :
: Generation
Analysis
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Diagnosis system design

A successful approach to diagnosis is to design a set of residual generators
with different fault sensitivities.

Designing diagnosis system utilizing structural analysis

@ Find (all) testable models (MSO/MTES/...)

@ Select a subset of testable models based on for example
= required fault isolability
- differential index properties

@ From each selected testable model generate code for the
corresponding residual.

@ Run residuals on measurement data and evaluate performance taking
noise and model uncertainties into account.

Algorithms covered here

= Basic MSO algorithm
= Improved MSO algorithm
= MTES algorithm

A basic idea

Model

Sub-model .
e,
Redundancy
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Number of ARR/MSO

Number of ARRs/MSO and number of measurements

Number of ARRs/MSO is typically much greater than the number of
measurements

Typically
= Number of measurements = degree of redundancy

= Number of ARRs/MSO sets — exponential in degree of redundancy
Common misunderstanding!

= Redundancy 4

= 4 output sensors

= Set minimal submodels with
redundancy = 4500

= Many solutions available, choose
wisely
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Dulmage-Mendelsohn decomposition Finding MSO sets

A cornerstone in the MSO-algorithm is the Dulmage-Mendelsohn

decomposition. = MSO sets are found by alternately removing equations and computing
X o Xo o Xeo X | Xe the overdetermined part.
I
" <> i r1 T2 | g T4
o ; | B¢ X
() i E 2 X X
| | 31X X
| |
! |
! :
I

~ |~
—~ — — | — —

(@)
|

Properties of an MSO:
b e e = A structurally overdetermined part is an MSO set if and only if

= In this algorithm we will only use it to find the overdetermined part 7f equations = # unknowns +1

M of model M because = The degree of redundancy decreases with one for each removal.
= All MSO sets are contained in the overdetermined part.
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Basic algorithm Basic algorithm

= Try all combinations The basic algorithm is very easy to implement.

In pseudo-code (feed with MT):
* Remove (1)

7 ;{l T2 T3 T4 = Get overdetermined part 1 function M yspo = FindMSO(M)
E ; - Remove (4) 2 if p(M)=1

2 X X « Get overdetermined part 5 Muso = {M}
B)| X X X - (6)((7))'\/'50! + else

) = Remove (5 —
<4) N « Get overdetermined part ’ Muso =0
) X— ¥ . (6)(7) MSO! 6 for :each eeM .
(6) X - Remove (6) ... ! M’ = (M \{e}) _ /

8 Mpyso = MuysoU FindMSO(M')

(7) X = Remove (2) ... . end

10 end
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The same MSO set is found several times The same MSO set is found several times

= Example: Removing (1) and then (4) resulted in the MSO (6)(7). = Removal of different equations will sometimes result in the same
overdetermined part.

= Remove (4)

r1 Tog X3 T4 - Remove (1) (1) §(1 T2 | T3 i?
VY AV AV
oy x| t@Ouso 2| x x
3)| X X X =% 2
5o A (4) X
(5) X X (5) X X
(6) X (6) X
(7) X (7) X

= If the order of removal is permuted, the same MSO set is obtained. Exploit this by defining equivalence classes on the set of equations

= Permutations of the order of removal will be prevented.
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FEquivalence classes Unique decomposition of an overdetermined part
M, ={(1)(2)(3)} X1 = {x1, %}

Let M be the model consisting of a set of equations. Equation e; is related 1 T2 | T3 | T4 M, = {(4)(5)} Xo = {x3}
to equation ¢ if (1) X X Ms = {(6)} X3 =0

& ¢ (M\{ej})+ (2) X X Ms = {(7)} X, — &

4 4

It can easily be proven that this is an equivalence relation. Thus, [e] 3)| X X X Xo = {x4}
denotes the set of equations that is not in the overdetermined part when (4) X
equation e is removed. (5) X | X
FEquivalence classes (6) X
The same overdetermined part will be obtained independent on which (7) X

equation in an equivalence class that is removed.

= M| =|Xi|+1
= All MSO sets can be written as a union of equivalence classes, e.g.
{(6)(7)} = M3 U My
{(4)(5)(6)} = M2 U M5
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FEquivalence classes Lumping

Any PSO set can be written on the canonical form _ _
= The equivalence classes can be lumped together forming a reduced

X1X2' ’ 'X Xo structure.
My Original structure: Lumped structure:
X1 Xo | X3 | Xa4
M2 (1) X X ‘ X4
: ) x X My ={(1)(2)(3)} | X
()X x| |x M ={(8)(5)} | X
M, (4) X Ms ={(6)} X
M4 (5) XX Ma ={(7)} X
: (6) X
M (7) X
This form will be useful for = There is a one to one correspondence between MSO sets in the

© improving the basic algorithm (now) original and in the lumped structure.

@ performing diagnosability analysis (later) = The lumped structure can be used to find all MSO sets.

Can be obtained easily with attractive complexity properties

Improved algorithm Lets consider this example again

r1 T2 I3
e1: xx=-x1+u+h el X
= The same principle as the basic algorithm. €2 X=Xx- §X2 txs+f e | X X X
= Avoids that the same set is found more than once. e X3 B X2 fX3 es X X
@ Prohibits permutations of the order of removal. € % : X2+ ;’ e X
@ Reduces the structure by lumping. &: Y2=xXtlh e X
&: y3=x3+fs 5
€6 X

x; represent the unknown variables, u and y; the known variables, and f;
the faults to be monitored.



MSO algorithm: We start with the complete model

{617 €2, €3, €4, €5, 66}

Ty T2 T3
€1 X
eo | X X X
€3 X X
€4 X
€5 X
€g X
89 /226
MSO algorithm: Remowve e3
{e1, e, e3,e4, 5, €6}
{es, e, €5, €6}
{eq, €5}
r1T T I3
AV
CTT Py
e | X X X
Y Y
UJ b Y X
€4 X
€5 X
€6 X
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MSO algorithm: Remove e; and compute (M \ {e1})"

MSO algorithm: Go back and remove e

{63764,65766}

{61,62;63764765766}

r1T X2 XT3
CT X
e | X X X
€3 X X
€4 X
€5 X
€g X
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{64765}

{63764,65766}

{617 €2, €3, €4, €5, 66}

{63765,66}
r1T X2 T3
Ve
CT Py
e | X X X
€3 X X
Ve
CT PaY
€5 X
€g X
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MSO algorithm: Go back and remove es

{61762;63764765766}

{637 €4, €5, 66}

{64765} {63765,66} {63,64766}
Ty T2 I3
AV
T Z%
es | X X X
€3 X X
€4 X
A%
05 )N
€6 X

MSO algorithm: Remouve e
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{ela €2, €3, €4, €5, 66}

{63764,65766}

{617 €2, €4, €5, 66}

{es,e5}  {es.es,es)  {es,es et {er,ea 65,66}
r1T T I3
€1 X
e | X X X
P A% A%
bd X )
Ave
CT Py
€5 X
€6 X
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MSO algorithm: Go back 2 steps and remove e3

{61762,63764,65766}

{63764,65766}

{61762764,65766}

{es,es}  {es es,e6} {es, es, €6}
r1 T2 T3
€1 X
e | X X X
A% A%
C/d ZX b Y
€4 X
€5 X
€6 X
94 / 226
Ezxample - electrical motor
Equivalent classes:
My ={e1,es} X1 ={i} {fr fi}

My = {e3,e7} Xo={T} {fp,fr}

M3 = {65} X3 = {f;,}
X4 = {w}
Fault signatures:
| fr £ £ fr f,
n| X X X
r X X X
|l X X X X

Faults in an equivalence class will be sensitive to the same residuals. J
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Summary - MSO algorithm

= An algorithm for finding all MSO sets for a given model structure
= Main ideas:
© Top-down approach
@ Structural reduction based on the unique decomposition of
overdetermined parts
@ Prohibit that any MSO set is found more than once.

An Efficient Algorithm for Finding Minimal Over-constrained Sub-systems
for Model-based Diagnosis, Mattias Krysander, Jan Aslund, and Mattias
Nyberg. IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 38(1), 2008.
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MTES algorithm

In the example e3 is the only equation without fault.
We will not remove e3
We remove ¢4 instead.

{617 €2, €3, €4, €5, 66}
{63,64,65766} {61762764765:66} {61,62763765766}

{64765} {63765766} {63764766} {61762763766} {61762763765}

The nodes are TES:s and the leaves are MTES:s.
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MTES algorithm

| will now present the algorithm that finds all MTESs and TESs.

A Structural Algorithm for Finding Testable Sub-models and Multiple
Fault Isolability Analysis., Mattias Krysander, Jan Aslund, and Erik Frisk
(2010). 21st International Workshop on Principles of Diagnosis (DX-10).
Portland, Oregon, USA.

It is a slight modification of the MSO algorithm.

Basic idea

There's no point removing equations that doesn’t contain faults, since
high sensitivity to faults is desirable.

Stop doing that! I
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All TSs and TESSs for the model

The algorithm traverses all TESs

{flanaf37f47f5}

{61762763764, €5, 66}

{f37f47f5} {flaf27f47f5} {flaf27f37f5} {f17f27f37f4}

{63,64,65766} {61762,63,65766} {61’62,63764766} {61,62763764,65}

{fa, f5} {f3, f5} {fss o} S, fos s S fo fay {f1, fo, f3)

{63765766} {63764766} {64,65} {61,62,63766} {61,62763,65} {61762763764}

The fault sets above are all possible fault sensitivites! |
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Scania truck engine example

Original model:

Tw = 532 equations
3
i 552‘?@ W, = 8 states
turbi restriction
M Exhaust |/ es\f/" — = 528 unknowns
manifold o manifold system | 7
P T H P T Por T = 4 redundant eq.
= gpre
i = 3 actuator faults

)

4 sensor faults

compressor

Ve

= Reduces the resulting number of testable sets:
» 1436 MSO sets cmp. to 32 MTESs which all are MSOs.
« Only 6 needed for full single fault isolation.
= Reduces the computational burden:
» 1774 PSO sets ~ runtime MSO-alg. (2.5 s)
» 61 TESs ~ runtime MTES-alg. (0.42 s)
- Few number of faults cmp to the number of equations. 101 /226

Problem formulation

Fault Signature Matrix Isolability matrix for set of ARRs in ‘Electric motor’

Mso1 °
R @
MSO2 L ] L ]
Ms03 ° ° f °
S04 ° ° °
fw ®
MSO5 ® L ]
T ®
Ms06 ° ° °
R fi fw T
Fault ® i w [

Test selection problem

Given:
= A fault signature matrix (e.g. based on MSO sets/MTES)
= A desired fault isolability (e.g. specified as an isolability matrix)

Output: A small set of tests with required strucutral isolability
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Test selection

= Many candidate residual generators (MSOs/MTESs) can be
computed, only a few needed for single fault isolation.

= Realization of a residual generator can be computationally demanding.

Careful selection of which test to design in order to achieve the specified
diagnosis requirements with few tests.

Later we will also describe how to select tests in order to obtain low
differential index models.
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Fault isolability of tests

‘ NF A £ T no alarm = NF, fi, f> consistent
T ‘ 0 X 0 T alarm = f; consistent
fi detectable f1 isolable from f> f> not isolable from f;

T
Small fault
Large fault
No fault

0 50 100 150 200 250 300 350 400 450 500
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Test selection 1s a minimal hitting set problem

Requirement for each desired diagnosabil-

Fault Signature Matrix

ity property:
usoz o o Detectability:
fr: T1 ={3,4,5,6}
usos o o Isolability:
fr isol.from f;: To = {3,5}
e ° ¢ f; isol.from fg: T3 = {1}
n N fr isol.from f,: T4 = {5,6}

fi
Fault

Test selection T

A minimal set of tests T is a solution if T N T; # () for all desired
diagnosability properties i.
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Test selection

Many more alternatives in for example:

De Kleer, Johan. "Hitting set algorithms for model-based diagnosis.” 22th
International Workshop on Principles of Diagnosis, DX, 2011. J
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Test selection

= Find all minimal test sets with a minimal hitting set algorithm.

Might easily lead to computationally intractable problems.

J. De Kleer, BC Williams. " Diagnosing multiple faults”. Artificial
intelligence 32 (1), 97-130, 1987. J

= Find an approximate minimum cardinality hitting set

A greedy search for one small set of tests. Fast with good complexity
properties, but cannot guarantee to find the smallest set of tests.

Cormen, L., Leiserson, C. E., and Ronald, L. (1990). Rivest, "Introduction
to Algorithms.”, 1990. J

= |terative approach involving both test selection and residual

generation.
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Example

NF | fr| £ f, | fr
fr|3—6| —13,5|5,6|3,4
11,461 | — |1,6|1,4
f,12—412123| — |3,4
fr12,5,6|2 (25|56 —

= Minimal test sets for full single fault isolability: {1,2,4,5},
{1,2,3,5}, {1,2,3,6}

= Assume that we do not care to isolate fg and f;, i.e., the desired
isolability can be specified as:

| fr i £, fr
frl1 1 0 0
11 1 0 O
f,]0 0 1 O
10 0 0 1

= Minimum cardinality solution: {2,4,6}
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

A h f NF || 6| & —%W@MM@—

a6 A fl1,24]| 2414
I‘2X X

; X x Hl 1,3 |3 — | 1
3

ol x | 23 3] 2 | —

= Select residual generator 1. Realization pass.
= Select residual generator 2. Realization fails.

= Select residual generator 3. Realization pass.

= Select residual generator 4. Realization pass.
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Outline Residual generation and structural analysis

Structural analysis of model can be of good help

= A matching gives information which equations can be used to (in a
best case) compute/estimate unknown variables

Careful treatment of dynamics

@ Residual generation = Again, not general solutions but helpful approaches in your diagnostic
toolbox

Two types of methods covered here

= Sequential residual generation

= Observer based residual generation
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FExample: Air suspension for truck Ezxample 1: Isolate from change in mass fi

Principle sketch and model for bellows in an air suspension system in a

truck To isolate from f1, do not use equation (1).
Mg
Mh = —Mg + Fp(p,h) — ph+d (1)
Mh=—Mg + Fy(p,h) —ph+f (1) pV(p, h) = mRT (2)
pV(p, h) = mRT (2) m = u181(p) + u282(p) + f2 (3)
m = u181(p) + wg2(p) + f (3) n=p+th (4)
n=p+hf (4) Yo=h+1 (5)
yo=h+1 (5)
! Feed
Ambient Pressure If a residual can be created using equations 2-5 then faults £, f3, and f;
has been isolated from change in mass f; J
fi - change in mass M f> - fault in actuation

f3 - fault in the pressure sensor f - fault in distance measurement
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Example 1: ARR or observer? FExample 1: ARR
After substituting measurements, there are two equations
pV(p, h) = mRT (2) m = u1g1(y1) + u282(y1)
m = u1g1(p) + u282(p) + 2 (3) yiV(yi,y2) = mRT
vi=p+f (4) _ _ _ _
yo=h+fa (5) Differentiate equation 2 and insert

d
ARR 7 V(. 52)) = RT(ug1(n1) + v2g2(x1)) = 0

R T . .
EI|m|nat|on. Ioo.ks feasible? The model is a DAE a.nd must The derivative appears linearly, so
After substitution of sensor therefore be rewritten in
values, two equations remain. state-space form. . d
auatior P o _ Frar=— (V) - RT(nei(y) + v2g2(y1))
= What about dynamics? The = The state m, is it possible to t
derivative appears linearly. estimate without using the With the state w = r — y1 V/(y1, y») the state-space realization is then
= An ARR approach look state equation (3)? Yes, solve
possible. m from (2) and substitute the w=—a(w+y1V(y1,y2)) — RT(u181(y1) + v282(y1))
’ measurements. r=w-+y1V(y,y)
= QObserver looks possible also.
=GOV 116 /226




Example 1: observer

After substituting measurement signals there are two equationsekvationer
kvar

m = u181(y1) + u2g2(y1)
nV(y1,y2) = mRT

Use the second equation as a measurement equation and feedback to
estimate the state m

M= u1g1(y1) + wg2(y1) + K(y1V(y1, y2) — MRT)
r=y1V(yi,y») — mMRT
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FExample 2: ARR

Substitute measurement y; = p and we obtain
Mh = —Mg + Fp(y1, h) — ph
Y1 V(yl, h) = mRT
m = u181(y1) + u282(y1)
To continue the elimination process for h och m is not as easy as last time.

Turns out that we have to differentiate equation (2) three times, leading
to y3) will be included in the ARR.

An ARR approach is not attractive, try an observer approach!

Example 2: Isolate from fault fy

To isolate from fault 3, do not use equation (5).

Mh = —Mg + Fy(p, h) — ph+ f
pV(p, h) = mRT

m = u181(p) + u2g2(p) + f2
n=pth

ya=h+1

N

A~ N /N /N
A~ W
— N N N —

o1

If a residual can be created using equations 1-4 then we have isolated fi,
f>, and f3 from fault f4.

Ezxample 2: Observer
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Write the model in state-space form with x = (h, h, m)

Mh = —Mg + Fy(y1, h) — ph X1 = x
y1V(y1,h) = mRT =

) 1
. Xp=—g+ MFb(n,Xl) ~
m = u181(y1) + t2g2(y1)

M
x3 = u181(y1) + t2g2(y1)
0= i V(yl, Xl) — X3RT
Again, with the last equation as a measurement equation we get a residual
generator in the form

%1 =% +Ki(y1V(y1,%1) — 3RT)
A 1 A " " A
0o =—g+ —Fp(y1, %) — %Xz +Ka(y1V(y1,%1) — X3RT)

M
%3 = ungi(y1) + g (y1) +K3(y1V(y1,%1) — X3RT)

r = y1V(y1,)?1) —)?3RT

dar K; valjs sd att X — x, dvs. vi har stabilitet.



Sequential residual generation

Basic idea

Given: A set of equations with redundancy
Approach: Choose computational sequence for the unknown variables and
check consistency in redundant equations

= Popular in DX community
= Easy to automatically generate residual generators from a given model

= choice how to interpret differential constraints, derivative/integral
causality

= |nteresting, but not without limitations
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Basic principle - Sequential residual generation

Basic approach

@ Given a testable set of equations (MSO/MTES/...)

@ Compute a matching (Dulmage-Mendelsohn decomposition)
@ Solve according to decomposition (numerically or symbolically)
@ Compute residuals with the redundant equations
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Sequential residual generation

5 equations, 4 unknowns

e1: x1—x=0 X1 X2 X4 X3
. €5 X
e: x3—x3=0
2 .3 4 e | X X
€: Xxgx1+2x2x4 —y1 =0 | X X X
e4: x3—y3=0 & X
e xo—yr =0 €4 X
Solve according to order in decomposition:
€ :X3:=Yy3 € X4 = X3
L . —xxatn
€3 1 X1 = X2 € 1 Xp = ————
2X4
Compute a residual:
€ =Y — Xp )
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lllustrative example
1 ) 1
e:qu=75—(p—p) e&:pp=—-—(q— ) €& :y3=qo
R\/l CT2
= (- ps)  eihm (@) e p =
ez-CIz—RV2P2 P3 6-P3—CT3CI2 a3 10-P1—dt
o e 1 (ps) o e B dp>
3-Q3—RV3P3 €& y1=p1 11-P2—dt
e_._l( ) L e_._dp3
4-P1—CT1qo q1 €31y = Q2 12-P3—dt



Find overdetermined sets of equations

There are 6 MSO sets for the model, for illustration, use
M = {617 €4, 65, €7, €8, €9, €10, ell}

Redundancy 1: 8 eq., 7 unknown variables (qo, g1, g2, p1, P2, P1, P2)

e'qzi(p—pz) e y1=p e 'bzﬁ

1:q1 Rut 1 %1 1 10 © P1 ar

e'P_l(q q1) €. Yy2=4q e'P—dp2

4 1 P1 Cre 0 1 8 1 Y2 2 11 1 P2 t
. 1

e5iP2=C—T2(q1—q2) € 1 ¥y3=dqo

Redundant equation

For illustration, choose equation e5 as a redundant equation, i.e., compute
unknown variables using (e1, es, €7, €g, €9, €10, €11)
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Computational graph for matching
P2 P2 g1 P1 P1 Qo Q2
€11 X X
el X X X
e X X X
€10 X X
€7 X
€9 X
€g X
er
U1 I D1 I P1
y3—>|—>¢]0 e4 €1 €11 €5
€g r

Equations ejp and ej3 in derivative causality.
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Compute a matching

e o — L( — ) v — e P — dp1
1-CI1—RV1P1 P2 & 1=p 10-P1—dt
e 1 — L( —q) e vy — ey By — dp>
4-P1—Cquo a1 8 - Y2 = Q2 11-P2—dt
€ . y3 = qo
P2 P2 g1 P pP1 Go Q2
€11 X X
e X X X
ey X X X
€10 X X
€7 X
€9 X
€g X
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Residual generator code
Fairly straightforward to generate code automatically for this case J

Q2 = y2; % e8

q0 = y3; % e9

pl = yi; % e7

dpl = ApproxDiff(pl,state.pl,Ts); % el0
ql = qO0-CTix*dpl; % e4

p2 = pl-Rvix*ql; % el

dp2 = ApproxDiff(p2,state.p2,Ts); % ell
r = dp2-(q1-q2)/CT2; % eb
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Causality of sequential residual generators Causality of sequential residual generators

Derivative causality

= Derivative causality

+ No stability issues

- Numerical differentiation highly sensitive to noise
= Integral causality

- Stability issues

+ Numerical integration good wrt. noise

= Mixed causality - a little of both

Not easy to say which one is always best, but generally integration is
preferred to differentiation

M*

®

il i mamarly met I = The blocks in the exactly determined part is called Hall components

= |f a Hall component is of size 1; compute variable x; in equation ¢;
= If Hall component is larger (always square) than 1 = system of
equations that need to be solved simultaneously

Here the matching gives a computational sequence for all variables J
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Matching and Hall components Hall components € Dulmage-Mendelsohn decomposition
Xo A X o Xaa X Xe
e3 M- E
T i w] & — T A S o
P X X fb B s, / i | E E
| X |f T | | o
2 X|f e o | L
6 w 1 1 D . i
el X X|f yi T o | ; b @' !
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Hall components and computational loops

5 equations, 4 unknowns

b >.<1 =0 X1 X2 X4 X3

e: x3—x3=0 es X

e3: xax1+2x0x4 —y1 =0 e | X X

e4: x3—y3=0 S AR
€2 X

e: xo—y»=20

5 2 — )2 - X

= Two Hall components of size 1 and one of size 2
(x3,4) = (xa, &) = ({x1, %2}, {e1, &5})

= If only algebraic constraints = algebraic loop
= |f differential constraint = loop in integral causality

A matching finds computational sequences, including identifing
computational loops

DAFE models

DAE model

An MSO/submodel consists of a number of equations gj, a set of dynamic
variables x1, and a set of algebraic variables x»

gi(dxi, x1,x0,2,f) =0 i=1,...,n

Xm = Exl

= A DAE model where you can solve for highest order derivatives dx;
and xo, is called a low-index, or low differential-index, DAE model.

= Essentially equivalent to state-space models

For structurally low-index problems, code for observers can be generated |
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Observer based residual generation

The basic idea in observer based residual generation is the same as in
sequential residual generation

@ Estimate/compute unknown variables %
@ Check if model is consistent with X

With an observer the most basic setup model/residual generator is

)'(:g(x,u) §:g(£,u)+K(y—h(>?,u))
y = h(x, u) r=y—h(X,u)

Design procedures typically available for state-space models
= pole placement
= EKF/UKF/Monte-Carlo filters
= Sliding mode

Submodels like MSE/MTES are not typically in state-space form! J

184 /226

Example: Three Tank example again

1 ) 1
e1:q1=5—(p1—p2) e po = ——(q1 — q2) €3 Y2 = Q2
Rv1 Cro
. 1
e4:p1:C7T1(CI0*q1) e y1=p1 € :y3=qo

MSO M = {e1, e, €5, €7, €g, €9, €10, €11}

This is not a state-space form, suitable for standard observer design
techniques. But it is low-index so it is close enough.

Partition model using structure

Dynamic equations Algebraic equations Redundant equation

) 1 oy o
pr=——(q0 — q1) 0=q0o—y3 r=y.—p1

ClTl 0=qiRv1 — (p1 — p2)

P2=C—(CI1—Q2) 0=qo— o
T2




Partition to DAE observer

Partition model using structure

Dynamic equations Algebraic equations Redundant equation

1

pr=7—(q0 —a) 0=d0—ys r=xn-m
1Tl 0=qi1Rvi — (p1 — p2)
PzZC_(QI—Q2) 0=qo—y»
T2

v

DAE observer

5 1, . N
P1=C—(CI0—C;'1)+K1f 0=Go—y3
T1
; 1, . R A
P2 = C—(Q1—Q2)+K2f 0=Gg1Rv1 — (p1 — P2)
T2
0=2Go—yo
O=r—n+p
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DAFE observer for low-index model
For a model in the form

).(1 - gl(X17X27Z7 f)

0
0 = go(x1, x2, 2, ), g2 is full column rank

8X2
0= gr(X17X27Z7 f)
a DAE-observer can be formed as
);21 = gl()?lv)?%Z) + K()?’ Z)gl’()?17)?27z)
0= g2(217)?272)

The observer estimates x; and x», and then a residual can be computed as

r=gr(X1,%2,2)

Important: Very simple approach, no guarantees of observability of
performance J
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Models with low differential index

A low-index DAE model

gi(dxy, x1,x2,2,f) =0 i=1,...

has the property

og  Og
odx;  Oxp

d
dxg=—x3 I=1,...

dt

full column rank

X=Xp, Z=29

Structurally, this corresponds to a maximal matching with respect to dxg

and xp in the model structu

re graph.

Model can be transformed into the form

)-<1 - g]_(X]_,XQ,Z, f)

0= g2(X17X2az7 f)?

0= gr(X17X2727 f)

0g>

—= is full column rank

8X2
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DAE observer for low-index model
The observer
)?1 = gl()?la )?2, Z) + K()?’ Z)gr()?b )?27 Z)
0 = g2(%1, %2, 2)
r = gr()?l7)?27 Z)
corresponds to the standard setup DAE
81(%1, %2, 2) + K(X, z)gr (%1, %2, 2)
Mw = g(X1, %, 2) = F(w,2)
r —gr(x1, %, z)
where the mass matrix M is given by
M = < ln1 0n1><(n2+n,) >
O(nz+nr)><n1 0(n2+nr)X(nz+nr)
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Run the residual generator

Low-index DAE models and ODE solvers

A dynamic system in the form

with mass matrix M possibly singular, can be integrated by (any) stiff
ODE solver capable of handle low-index DAE models.
Example: odel15s in Matlab.

= Fairly straightforward, details not included, to generate code for
function f(x) above for low-index problems

= Code generation similar to the sequential residual generators, but only
for the highest order derivatives

= Utilizes efficient numerical techniques for integration
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Outline

@ Diagnosability analysis

Problem formulation

Given a dynamic model: What are the fault isolability properties? J

Diagram View]
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Diagnosability analysis

Diagnosability analysis

Determine for a

@ model

@ diagnosis system
which faults that are structurally detectable and what are the structural
isolability properties.

MSO based approach

Since the set of MSOs characterize all possible fault signatures, the MSOs
can be used to determine structural isolability of a given model.

Often computationally intractable. Just too many.

Better way

Utilize steps in the MSO algorithm; equivalence classes!
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Diagnosability analysis for a set of tests/model
A test/residual with fault sensitivity

i b
r{ X 0

makes it possible to isolate fault #; from fault f>. Now, consider single
fault isolability with a diagnosis system with the fault signature matrix

i h f
n{X X 0
r 0 X X

The corresponding isolability matrix is then

A K
L] X X 0
10 X 0
£lo X X
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Isolability matrices

Interpretation

A X in position (i j) indicates that fault f; can not be isolated from fault f;

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine’
T T T T T T T T T T T T

fpaft @ @
waft @ @
fomegat ®
fvol | [ ]
fwe [}
fwic ®
wih | ® o
fxthl | ® o
fypic | ®
fypim |- ®
fyTic |- [}
fyWaf | ®

s s s s s s s s s s s s
fpaf fwafomegatfvol fWwc fwic fwth fxthl fypic fypim fyTic fywaf
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Structural fault modelling

A fault f only violates 1 equation, referred to by er. l

If a fault signal f appears in more than one position in the model,

e1:0:g1(X1,X2)+Xf
e 0= go(x1,x2) + xr
e3:xr=1"1

@ Introduce new unknown variable x¢

@ Add new equation xr = f

Now, the model fulfills the assumption.
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Structural detectability and Dulmage-Mendelsohn

A fault f is structurally detectable if er € M. I

Mo

M,y

My

= Fault f; not detectable

M,y

= Fault > detectable

1

1

1

1

I ..
| A
1
o=
1

1

1

M,

My
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Structural isolability

A fault F; is isolable from fault F; if O(F;) € O(F))

Meaning, there exists observations from the faulty mode F; that is not
consistent with the fault mode F;.
= Structurally, this corresponds to the existence of an MSO that include
e, but not eg,

Fi Fj
r{ X 0
= or equivalently, fault F; is detectable in the model where fault F; is

decoupled

Structural isolability

Fi structurally isolable from F; iff ef € (M\ {e,;.})+

Structural single fault isolability can thus be determined by n,2f
M™-operations. For single fault isolability, we can do better. L

Detectability in small example

e1: X1=—x1+x+Xx5
&: x2=—-2x+Xx3+x4
e3: x3=-3x3+x5+fH+10h

e: X4=—4x4+x5+ 1
e: Xs=—bxs+u+1f
&% : Y1=X1
€. Y2=2X3
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FEquivalence classes and isolability

From before we know that M™ of a model can be always be written on the
canonical form

X1 Xy Xy, Xo
M,
M2 2 2|
. W/%

= Equivalence classes M; has the defining property: remove one
equation e, then none of the equations are members of (M \ {e})"

= Detectable faults are isolable if and only if they influence the model in
different equivalence classes
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Isolability from fault f3 in small example

(S Xlz
€ X=
€3 : )'<3:
€4 . )'<4=
(S ).(5:
€6 Y1=
€7 Y2 =

Equivalence

—X1 + X2 + X5
—2x0 + X3+ X4
—3x3+x5+f+h
—4x4 4 x5 + f3
—5xs+u+fy

X1

X3

class [eq]

A

[e4] - {e17 €2, €4, 66}
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Ezample system - A automotive engine with EGR/VGT

f2 _) Uegr

flo EGR cooler

EGR valve

fi
Wegr \ f
f e {
/ . f12 uvgt /
W | @ J W,
) ® Ten il
Intakfel . Eot Turbine
ifold xhaus
fanto . manifold
f'
fa Cylinders we k= ls
Wal | ,
Ugn 8
fi3
| n {
4
N we X
2 ~— 7 X
fi1 Intake throttle Intercooler Compressor

Method - Diagnosability analysis

Method

@ Determine equivalence
classes in M

- Me, = M\ {e}
- ef] = MT\ M
@ Faults appearing in the
same equivalence class
are not isolable

@ Faults appearing in
separate equivalence
classes are isolable

Model structure

el

e2

e6

Equations

e5

e7

of model
- - - = = = - — — — —o—
I e — —o— -
|
|
I q4—————t
|
|
- I L]
xll xl2 xl4 xl3 xI5
Variables

f1, f2
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Structural Model of A Single Turbo Petrol Engine

FETTT T T T T T T T T TG T T T T T T T T T T T T T T T T T T @@ T T T T T T T T T T T[T T T T T T T T oo g
Lo . £33 4
E e . ° e o 4
E e e o | | 4
E ° . ° o o ° 4
= ) ° . 4
- ° o o ° ° | -
E . . . . 4
E ° . . e o 4
F ° ° o o | -
E ° . . e o 4
E ) oo 4
E . oo | 4
E oo . . 4
E o0 7
E 'y oo q 4
E oo . 4
E e e ° ° 4
E e oo ° . | 4
E . oo o 4
E . o o o . 4
E T3 . | 4
E 133 . 4
E e o o 4
E oo o . . 4
E . oo . ° 4
E . oo 4
E oo 4
E ° H 7
E ° . . 4
E o0 e o . 4
E o oo e o . | 4
E e o 4
E ) e ° 4
E . ° ° . | 3
E o o ° ° 4
E ) e o o ° 4
E oo | 3
E . o o 4
E o 7

°| B
E | 3
E | hs
ul 11l In

156 / 226



Dulmage-Mendelsohn with equivalence classes

& 1113
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e 0 @
e o0
& L] e o
e o
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Structural detectability and isolability

A fault f is structurally detectable if er € MT.

A fault f; is structurally isolable from f; if e € (M \ {er})"

Structural detectability and isolability properties can be obtained by a
number of C+ operations.

159 / 226

Fault isolation matriz for engine model

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'
T T T T T T T T T

T T T
fpaft @ @ E
waf @ @ i
fomegat - S B

fvol |- S B

fwth |- S & T
fxthl |- S & 1
fypic - [ J 1
fypim ® 4
fyTic [} 4
fywaf ®

fpaf fWaffomegatfvol fwc fWwic fwth fxthl fypic fypim fyTic fywaf
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Diagnosability under a causal interpretation

causal —

ct = set of monitorable constraints under a causal interpretation of
differential constraints.

Definition (Causal Structural Detectability/Isolability)

A fault f is causally structurally detectable in a model if

CfECJr

causal

A fault f; is causally structurally isolable from f; in a model if

Cr, € (C \ {Cﬁ'});t-;usa/

No details here: Possible to define C* _ for integral, derivative, and

causal
mixed.
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Solvability of a set of exactly determined equations

OIC

Integral

Derivative Mixed

The automotive engine — mixed causality
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>> model.IsolabilityAnalysis();

fp_af
fw_af
fw_th -
fw_cr

fc_vol [

fx_th -

fyw_af -

fyp_im

fyp_ic [

fyT_ic

Isolability matrix for 'Engine model’

I I I I I I I I I I I
fp_af fw_af fw_th fw_c fc_vol fw_t fx_th fyw_affyp_imfyp_ic fyT_ic
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Causality and differential index

algebraic or integral causality l

High index problems

mixed or differential causality

Makes it possible to analyze what isolability performance can be obtained
using direct application of state-space techniques, e.g., state-observers

The automotive engine — integral causality
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>> model.IsolabilityAnalysis(’causality’, ’int’);

fp_af

fw_af -

fw_th |

fyw_af -

fyp_im -

fyp_ic -

fyT_ic |

Isolability matrix for 'Engine model’ (integral causality)

I I I I I I I I I I I
fp_af fw_af fw_th fyw_affyp_imfyp_ic fyT_ic fw_c fc_vol fw_t fx_th
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The automotive engine — derivative causality Diagnosability analysis for a fault signature matrix

>> model.IsolabilityAnalysis(’causality’, ’der’); |

Isolability properties of a set of residual generators

Isolability matrix for 'Engine model' (derivative causality)

Previous results: structural diagnosability properties of a model, what
wh- @ @ @ @ @ @ © © ® © © about diagnosability properties for a diagnosis system
fc_volf . . . . . . . . . . . Fault Signature Matrix
wr & 000 66060606 060 wsot | o A test with fault sensitivity
fw_af - e 6 06 06 0 0 00O
MSO2 ® ® f; f/
fp_af . . . . . . .
rn X
fw_c |- e 6 6 6 0 0 O vsosp @ ®
fth |- e 0000 00O 0 isolates fault f; from f;.
fyw_af [ e 00 00 00O I . For example, MSQO?2 isolates
fyp_im ®© 0000 00O @ Fault £, from fg and f;,
fyp_ic | e 00000 e ° @ Fault fr from fz and f;
fyT_ic o 6 06 06 0 0 O i i i
Fault
fw‘_th fc_‘vol f\n)_t fw‘_af fp_‘af fw‘_c fx_‘th fyw‘_affyp‘_imfyp‘_ic fyT‘_ic
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Diagnosability analysis for a fault signature matrix
Fault Signature Matrix Isola?lllty matrix f?r set of ARRs' in 'Electric rr'mlor'
MSO1 ®
R @
MS02 [ ] °
MSO03 ) [ fir ® 1
- — Tser Tvernens A
I eredon W{d
fwl ® J
MSO5 ® ®
MSO6 L ] L ] [ ] T .
T R e

Rule: Diagnosability properties for a FSM

Fault f; is isolable from fault f; if there exists a residual sensitive to f; but
not f;
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Outline

@ Sensor placement analysis
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Minimal sensor sets and problem formulation

Given:
= A set P of possible sensor locations

= A detectability and isolability performance specification

MINIMAL SENSOR SET

A multiset S, defined on P, is a minimal sensor set if the specification is
fulfilled when the sensors in S are added, but not fulfilled when any proper
subset is added.

| \

PROBLEM STATEMENT

Find all minimal sensor sets with respect to a required isolability
specification and possible sensor locations for any linear
differential-algebraic model
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A motivating example and problem formulation

€e1: X1=—Xx1+tx2+Xs5
& Xo=—2x0+ X3+ X4
e: x3=-3x3+x5+fi+hH

e: X4=—bdx4+x5+ 1
es: Xx5=-bxgt+u-+fy
Question: Where should | place sensors to make faults f, ..., f; detectable

and isolable, as far as possible?
For example:
= {x1}, {x2}, {x3,xa} = detectability of all faults

= {x1,x3}, {x1,xs}, {x2,x3}, {x0, x4}, {x3, %4} =
maximum, not full, fault isolability of fi,...,f4

= {x1,x1,x3} = Possible to isolate also faults in the new sensors

More than one solution, how to characterize all solutions? J
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A Structural Model

T i) T3 Xq Is

€1
e1: Xx1=-—x1+x+ x5 | |
& Xp=-2X+Xx3+Xx4 62: |
& X3=-33+x5+h+05 63: h—
e: X4=—b4x4+x5+ 1 : fa—
es: Xxs=-bxs+u+fy c i fs=

es | Jfa—
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Detectability Sensor Placement for Detectability

= Assume that a fault f only violate 1 equation, er.

Measure x3 — {fi, 2, fa}
T1 T2 T3 Ty Zs

M,

€5

Detectability
0 g e
A fault f is structurally detectable if ef € M. !
Xo XX o Xaa X | Xe e1: x1=-—x1+x+x5 . I :
| . 2 |
o | e: X2=—2x0+ X3+ x4 |
_____________ | : |
M () | | &s: x3=-3a+txs+h+h ¢ ;1 bs
M, ! i i € : Xx4g=—d4x4+x5+ 1 : 2
! ! : = Fault f; not detectable ) |
! ! ! es: Xxs=-bxstu+fy €4 f3—>
Macsy ! @“"”-‘ | | = Fault f, detectable €: Y=2X3 :
! | [
|
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Define a Partial Order on b; Minimal Sensor Sets - Detectability

Partial Order on b;

Detectability Set

b; > bj if element (i, j) is shaded

I PR TR - D([f;]) = measurements that give detectability of fault f;
ey ( \ o o 0
le = all variables in equal and higher ordered blocks
T Ty T3 Ty Tp
er [ by
e b ! D(f) = {x1, %, x3}
°2 | 2
I —
. : A o - - D(fZ) - {Xl)X2aX3}
: fo— _ ba D(f3) = {Xl)X27X4}
“ 0 L / D(fa) = {x1,x2, x3,xa, x5 }
es | fa— | 5
Let e; measure a variable in b; then T h

all equal and lower ordered blocks are included in the overdetermined part.
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Minimal Sensor Sets - Detectability

Sensor set for detectability
S is a sensor set achieving detectability if and only if S has a non-empty
intersection for all D(f;).

A standard minimal hitting-set algorithm can be used to obtain the
minimal sensor sets.

D(f) = {x1,x2,x3}
D(f2) = {x1, %2, x3}
D(f3) = {x1,x2,xa}

(fa) = {x1, x2, x3 X4, X5 }

= {X]_},{X2},{X3,X4}

O
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Sensor placement for maximal 1solability

= detectability necessary for
isolability

= minimal sensor sets: {x1},
{x2}, {x3,xa}

= add e.g. measurement x;

= all faults are detectable
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Sensor placement for isolability

f; is isolable from f; if there exists a residual r

such that
i A
riX 0
T1_ T3 _
Ji——er : Isolability characterization: f; is structurally
e isolable from f1 if er € (M \ {eg })T.
f3 is isolable from f; in M = {e1,...,e4} and £z
e i is detectable in M\ {e1}
fa—e4 :

The sensor placement problem of achieving isola-
bility from f; in M is transformed to the problem
of achieving detectability in M\ {e;}.

Proceed as in the linear case to achieve isolabil-
ity.
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Making faults isolable from f

= Which faults are isolable from
fi with existing sensors?

= no faults are isolable from
fi

= Applying the detectability
algorithm gives detectability
sets

D(f3) = {x3,xa}
D(fs) = {x3,%, x5}
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Achieving maximum isolability Achieving maximum isolability

= detectability sets for maximum isolability

= Minimal sensor sets for full detectability
isolate from {f, K} : {x3,xa}

isolate from f3 : {x3,xa} = {x3}, {xa} Pt {xe}s {x3,xa}
isolate from 3. : {x,x3, x4, x5 } = The first set {x;} was selected, iterate for all!

. . = Minimal sensor sets for maximum isolability:
= measurement x; was added to achieve detectability

{xxah, {xxal {eoxsl, %), {x3,%}
= Maximal isolability is obtained for o T o T 7

{x1,x3}, {x1,xa}

= This is not all minimal sensor sets!
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How about faults in the new sensors? Method summary

“Sloppy” versions of two results

_ © For each detectability and isolability requirement, compute
Faults in the new sensors are detectable detectability sets

This is not surprising, a new sensor equation will always be in the over - Dulmage-Mendelsohn decomposition + identify partial order
determined part of the model, that was its objective. @ Apply a minimal hitting-set algorithm to all detectability sets to
compute all minimal sensor sets

Let F be a set of detectable faults in a model M and f; a fault in a new
sensor. Then it holds that fs is isolable from all faults in F automatically. The minimal sensor sets is a characterization of all sensor sets )

This result were not as evident to me, but it is nice since it makes the
algorithm for dealing with faults in the new sensors very simple.
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Example: An electrical circuit Ezxamples of results of the analysis

A small electrical circuit with 5 components that may fail

z
A ()
z =/
1
@ — = f‘OFI{'T\ \/\R/\/l\/‘—‘i
Vi = Vs Vs = Vo + V3 4 9
_ L [ | =+ a=iktitis R,
AXXR WA . C
4 2 vi=2z vo = Riip Is) || s
d d -4 ~ |l =
Rg vp = L—i is = C—w —
C 4 g 5 g -
1E | | 5 i=Wwa vs = Rais Example run 2
— | | o Objective Achieve full isolability
- Possible measurement voltages and currents
= 10 equations, 2 states, 5 faults, 1 known signal 5 minimal solutions
= Possible measurements: currents and voltages -7 {ir, is}, {io, i3, i}, {in, i, is }, {i3, ia, i5 } J
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Outline

- Galytical oo stvuctivral forgficrlics ——

@ Analytical vs structural properties
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Analytical vs structural properties

= Structural analysis, applicable to a large class of models without
details of parameter values etc.

= One price is that only best-case results are obtained

= Relations between analytical and structural results and properties an
interesting, but challenging area

= Have not seen much research in this area

Book with a solid theoretical foundation in structural analysis

Murota, Kazuo. “Matrices and matroids for systems analysis’. Springer,
2009.
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Basic assumptions for structural analysis

= Structural rank sprank(A) is equal to the size of a maximum
matching of the corresponding bipartite graph.

= rank(A) < sprank(A)
= Structural analysis can give wrong results when a matrix or a
sub-matrix is rank deficient, i.e., rank(A) < sprank(A).

= Example
A=
X X
— Astr =
yi| 1 1] |x X X
Y2 11 X2 L .
Structual matrix just-determined
Redundancy relation y; — y» = 0. = no redundancy

Wrong structural results because A is rank deficient:
rank(A) =1 < 2 = sprank(A)
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You have to be careful

fin = x X fin B fou
fi C1 X X
fout = X
fin _»fout _ f C2 X X
Y1 ="Tin s X
f2 }/2 — Tout C4 X
x=f+h c | X X X
Now, a leak is structurally detectable! |

For structural methods to be effective, do as little manipulation as
possible. Modelica/Simulink is a quite good representation of models for
structural analysis.

190 /226

FExercise

FEzercise

a) Compute the fault isolability of the model below.

b) Eliminate T in the model by using equation e4. The resulting model
with 6 equations is of course equivalent with the orignal model.
Compute the fault isolability for this model and compare it with the
isolability obtained in (a).

di

e1:V:i(R—|—fR)+Ld—:_+Kaiw ey =1i+f

& Ty = Kai? &Y =w+1,
dw

e:J—=T—(b+fH)w er:yr=T+fr

dt
e4:T: Tm—T/
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Isolability properties depends on model formulation

Original

Isolability Matrix

® ®
® [ J

®
R fi fw

Modified model

Isolability Matrix, T eliminated
T T
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Isolability properties depends

on model formulation

Original

PSO decomposition
T — S

—
el2f | e .

esr . .

e6 L] .

edr . . . .

e2r

elfm — — — — — — — — R

Equations

el —— = = — — — — fi

el0f

e3r

o - —— - — — — — T

e - — — — — — — — fw

L L L L L L L L L L
th dth alpha T Tm dl I dw T w
Variables

Outline

Modified model

PSO decomposition, T eliminated
T T T T T T T

T
el2 . .

e5 .

e6

el —— — — —

el0

e2r

Equations

e3f

e — — — — — o

er— — — — — — o

e8r— — — — — — o

th dth alpha di  dw Tm Tl I
Variables
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e Use-case: an aulomotive engine
Problem definition
Modelling

Evaluation on experimental data

Isolability analysis and test selection
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Model based design for an automotive engine

= Modelling

How to model
Simulink, Modelica,
equations

= Analysis

Diagnosability
Observability
Possible tests

= Design

= Residual generator design

= Evaluation on test cell data

Code generation
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Case study - considered faults

= Clogged air filter
= Leakage

before compressor
after throttle
before intercooler

= |ntake valve fault

= |ncreased turbine friction
= Sensor faults

Throttle position

air mass flow

intake manifold pressure
pressure before throttle
temperature before
throttle

Throttle

Intercooler

: Compressor

Turbine

Intake Exhaust Wastegate Exhaust

manifold Engine manifold system
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Case study - sensors and actuators

= Sensors (8)

« Pressure o A "

(throttle, intake ambient)
- Temperature

(throttle, ambient) £
« Air mass flow a
= Engine speed
= Throttle position

= Actuators (2) ’

Intake - Exhaust Wastegate Exhaust
Engine

Intercooler

: Compressor

Turbine

manifold system

= Wastegate position manifold
« Injected fuel
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Modelling of automotive engines

960

Modelling diesel engines with a variable-geometry
turbocharger and exhaust gas recirculation by
optimization of model parameters for capturing
non-linear system dynamics

J Wahlstrom* and L Eriksson
Department of Electrical Engineering, Link6ping University, Linképing, Sweden

The manuscript was received on 12 February 2010 and was accepted after revision for publication on 4 January 2011.

DOI: 10.1177/0954407011398177

Abstract: A mean-value model of a diesel engine with a variable-geometry turbocharger
(VGT) and exhaust gas recirculation (EGR) is developed, parameterized, and validated. The
intended model applications are system analysis, simulation, and development of model-
based control systems. The goal is to construct a model that describes the gas flow dynamics

oAl A 4l Ao fen e 4l e e P A e el e e TUATY o A bt il e
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Modelling of automotive engines, non-linear equations

a Tim
where pin, and T}y, are the pressure and temperature
respectively in the intake manifold, 7. is the engine
speed, and Vy is the displaced volume. The volu-
metric efficiency is in its turn modelled as

Tyol = Cvol1 v/Pim + Cyol2 v/ Mle + Cyol3 (12)

The fuel mass flow W; into the cylinders is con-
trolled by us, which gives the injected mass of fuel
in milligrams per cycle and cylinder as

10°°
W= 20 UseTey (13)
where 7y, is the number of cylinders. The mass
flow We, out from the cylinder is given by the mass
balance as

Weo = Wp + Wi (14)

The oxygen-to-fuel ratio Ao in the cylinder is
defined as

Wei Xoim

Ao= W;(0/F), (©/F), (15)

Plot model structure

the initialization is that the cylinder mass tlow
model has a mean absolute relative error of 0.9 per
cent and a maximum absolute relative error of
2.5 percent. The parameters are then tuned accord-
ing to the method in section 8.1.

4.2 Exhaust manifold temperature

The exhaust manifold temperature model consists
of a model for the cylinder-out temperature and
a model for the heat losses in the exhaust pipes.

4.2.1 Cylinder-out temperature

The cylinder-out temperature T, is modelled in the
same way as in reference [23]. This approach is
based upon ideal-gas Seliger cycle (or limited pres-
sure cycle [1]) calculations that give the cylinder-
out temperature as

- 1=1/%0 (1 1=va y1/7a-1
Te=mg e /M re X

1—Xey | Xey —1
(g (22 v 1o
<qm< Cpa * Cva rhre an

where 74 is a compensation factor for non-ideal
cycles and x., the ratio of fuel consumed during
constant-volume combustion. The rest of the fuel,
ie. (1 —x..) is used durine constant-pressure com-
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>> model.PlotModel();

Engine model

Check model properties

Check model for problems

= Number of known/unknown /fault variables
= Are all signals included in the model
= Degree of redundancy

= Do the model have underdetermined parts

>> model.Lint();
>> model
Model: Engine model
Type: Symbolic, dynamic

Variables and equations
90 unknown variables
10 known variables
11 fault variables
94 equations, including 14 differential constraints

Degree of redundancy: 4

Model validation finished with O errors and O warnings.

Dulmage-Mendelsohn decomposition

of model 'Engine model'

Engine model
q

Equations

>> model.PlotModel(); )

>> model.PlotDM(); )
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Dulmage-Mendelsohn with equivalence classes

Dulmage-Mendelsohn decomposition of model 'Engine model’

° o o o]
° L] L] E
. ® o g
S - [ D —
| ®e [ ool —
‘. . N «
777777 — —o— — — — — —Hfw_af
E—8% - — — — — ﬁa.nfffi“fffw_c
| ="
= . o !
" — = — — = - — — + 77:'777&fwth
s ¢
S [ g
® ° e ©
El le ..?‘.. ¢
w ]
_) - — — 77}77744777.:f07v0|
) .. . °
-] — = 7+7277F77—fw4
°
| :;.o "
777777777 — P o,
- R — —fp_af
| o ® o

>> model.PlotDM(’eqclasses’, true, ’fault’, true); J
208 [ DD

Isolability analysis — integral causality

>> model.IsolabilityAnalysis(’causality’, ’int’); )
‘Isolak‘JiIity r‘natrix‘ for ‘I?nginfe moqel‘ (ir‘negra‘l cau$ality)‘
fpafl @ ® © 0 0 -
fw_af - ( ® ® 0 0 -
fw_th | ) ® © 0 0 -
fyw_af - ([ ® ® 06 0 -
fyp_im - { ® & 06 0 -
fyp_ic - o ® ®© 06 0
fyT_ic e 6 6 06 0
fw_c - o 6 06 0 -
fc_vol ® O 0 0 -
fw_t o © 0 0 -
fx_th - ® ©®© 0 0 -

I I
fp_af fw_af fw_th fyw_affyp_imfyp_ic fyT_ic fw_c fc_vol fw_t fx_th
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Isolability analysis

>> model.IsolabilityAnalysis();

Isolability matrix for '

Engine model'

fp_af .

fw_af - [ ]

fw_th | [ ]
fw_cr .

fc_vol [

fx_th -
fyw_af -
fyp_im -
fyp_ic -

fyT_ic

. . .
fp_af fw_af fw_th fw_c fc_vol fw_t fx_th fyw_affyp_imfyp_ic fyT_ic
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Redundancy & testable sub-models in the engine model

MSO - set-minimal redundant set

Redundancy 4

A r =y —y would give 4 residuals

Due to the turbine feedback,
many more possibilities exists
In the model: 4496 MSO sets
- all observable
« 206 with low index (4.6%)

Choose wisely

Throttle

Intake
manifold

' Turbine

: Compressor

Exhaust
system

208 /226



Test selection

Candidates

= Each MSO with n equations, n possible residual generators

= 4,496 MSO sets: 343,099 residual generators
= 206 low-index sets: 728 candidates (208 realizable)

= Do not need that many to isolate the faults ~ number of faults

| \

Our strategy
= If models were ideal, all equally good
= Here: make test selection based on performance on measured data
= C-code generation essential for evaluation, Matlas just too slow

= Simple approach based on Kullback-Leibler divergences (no details
here, ask me)

= Restriction to 4 sensor faults gives 7 selected residuals
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Test cell data

= Volvo production engine

= EPA HWFET cycle translated o
into load cycle for engine
(rpm/torque) K

= 5 data sets (here):

= Fault free
= Sensor faults

EPA Highway Fuel Economy Test Cycle (HWFET)

50

Velocity [km/h]

> Intake pressure

> Air-flow sensor

> Pressure after intercooler

» Temperature after % 5 . . . 10 12 )
intercooler ol
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FSM € Fault isolation of selected residuals

Fault Signature Matrix

MSO 1650 [ ] [ ] [ ] Fault isolability of 7 selected MSO sets
= 4 sensor faults wouzl @ °
fyw_al Y
u
7 residuals wowr| @ °
i °
= 12-14 states "
MSO 4018 e o
= 75-79 equations e o
MSO 4067 @ [
= C-code ready to o
MSO 4075 [ ] [ J
run
MSO 4478 [ ] fyw_at yp_im . HTic
St tpm e b
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Measurement data, no-fault dataset
Engine speed Intake manifold pressure Air mass flow
4000 150
100
£ 2000 & 3 0.02
e 3 _&’ B
50
o——— o———
2 4 6 81012 2 4 6 81012 2 4 6 81012
Throttle position Injected fuel Wastegate
40 3000
o 2000
X 20 5 R0
1000
0 e —
2 4 6 81012 2 4 6 8 1012 2 4 6 81012
Intercooler pressure Intercooler temperature Ambient pressure
120 312 100.25
< 110 310 100.2
a N4 a
x x
100 308 100.15
90 306 1001 ——m———————
2 4 6 81012 2 4 6 81012 2 4 6 81012
t [min] t [min] t [min]
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Running residual generators

o

= Sampling rate 1 kHz
= Data set 12 minutes with 10

measurement signals

= Execution takes about 0.5 sec

on this computer (~ 1400
times real-time)

= Simple thresholding based on

false-alarm rate on no-fault
data

Residuals, dataset: fyp_ic
r2: MSO 4012

rl: MSO 1650

%é/
<
=
=
=
<
—
=
=

~

N

o

08

0.6

04

02

r2 (MSO 4012): Fault Free Data
T T T

r3: MSO 4017 ()

7777777 MSO 1650 -
,,,,,,,,,,,,,,, 5
2 4 6 8 1012 2 4 6 8 10 12 2 4 6 8 1012  ysosml
r4: MSO 4018 (*) r5: MSO 4067 r6: MSO 4075 (*)
77777777 2 MSO 4017 -
1 _ —
_ _ 0 | MSO 4018 -
ffffff \‘W‘M‘W‘Vwﬁ ’
,,,,,,,,,,,,,, MSO 4067 -
2 4 6 8 10 12 2 4 6 8 1012 2 4 6 8 1012
t [min] t [min]
MSO 4075 -
r7: MSO 4478 S0 40
MSO 4478 -

2 4 6 8 10 12
t [min]

8 10 12 14
t[min]
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Fault Matrix
[
V—\
o
[ BN ]
[ ]
[ J
[ ]

fyw_af fyp_im§ fyp_ic

fyT_ic
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Residuals, dataset: fyw_af

r1: MSO 1650 (¥)

r2: MSO 4012 (*)

r3: MSO 4017 ()

2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12

r4: MSO 4018 10 r5: MSO 4067 (*) r6: MSO 4075
e, L ¥
ol/) ‘ / N/\!\/
/ | oW W it '\/“’\/V L"\/JWWWW
1 sL_ .
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12
t [min] t [min]
r7: MSO 4478
0
WMM/\/

S
2 4 6 8 10 12
t [min]

Fault isolation performance

Fau t Signaturg Matrix‘

MSO 1650 - [ BN ]
MSO 4012 - [ ]

b
MSO 4017 - (I [ ] 2>

o
MSO 4018 -
MSO 4067 - [ ]
MSO 4075 -
MSO 4478 -

fyw‘,af fyp‘,\m fyp‘,ic IyT‘,ic
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= Performance measure
P(f; diagnosis|f;)

= ldeally diagonal

= This non-tuned version works

quite well

= Some difficulty isolating a fault

in the air-mass flow sensor

(fyw_af) from a fault in the
intake manifold pressure sensor

(fyp-im)

Injected fault

fyw_af

fyp_im

fyp_ic

fyT_ic

Fault Isolation Performance Matrix

97.3

- .

100.0
. . -
fyw_af fyp_im fyp_ic fyT_ic

Diagnosed fault
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Quick look back at the design

Automated (or close to)

« Modelling (structural and analytical)

« Analysis of diagnosability and simulation properties
« Test selection

= Code generation

= The designed residuals are nowhere near optimal

= Gives a candidate solution; suitable for an engineer to fine-tune (or
develop more advanced methods)

= Important that code is readable, understandable

217/ 226

Some take home messages

Structural models

= Coarse models that do not need paramerer values etc.
= Can be obtained early in the design process
= Graph theory; analysis of large models with no numerical issues

= Best-case results

Analysis

= Find submodels for detector design

= Not just y — y, many more possibilities
= Diagnosability, Sensor placement, ...

Residual generation

= Structural analysis supports code generation for residual generators
= Sequential residual generators based on matchings

= Observer based residual generators

y
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— Concllscing sermards —

S W/&WW/@M/_
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Structural methods for analysis and design of
large-scale diagnosis systems

Erik Frisk and Mattias Krysander
{erik.frisk,mattias.krysander}@liu.se

Dept. Electrical Engineering
Vehicular Systems
Linkoping University
Sweden

July 8, 2017

LINKOPING
T P
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Some publications on structural analysis from our group

Sensor placement and diagnosability analysis

@ Mattias Krysander and Erik Frisk.
Sensor placement for fault diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 38(6):1398-1410, 2008.

ﬁ Erik Frisk, Anibal Bregon, Jan Aslund, Mattias Krysander, Belarmino
Pulido, and Gautam Biswas.
Diagnosability analysis considering causal interpretations for
differential constraints.
IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 42(5):1216-1229, September 2012.

Some publications on structural analysis from our group

Overdetermined equations, MSO, MTES

@ Mattias Krysander, Jan Aslund, and Mattias Nyberg.
An efficient algorithm for finding minimal over-constrained
sub-systems for model-based diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 38(1), 2008.

@ Mattias Krysander, Jan Aslund, and Erik Frisk.
A structural algorithm for finding testable sub-models and multiple
fault isolability analysis.
21st International Workshop on Principles of Diagnosis (DX-10),
Portland, Oregon, USA, 2010.
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Publications on Structural Analysis from our group

Residual generation supported by structural analysis

@ Erik Frisk, Mattias Krysander, and Daniel Jung.
A Toolbox for Analysis and Design of Model Based Diagnosis Systems
for Large Scale Models.
IFAC World Congress, 2017.

@ Erik Frisk, Mattias Krysander, and Daniel Jung.
Analysis and Design of Diagnosis Systems Based on the Structural
Differential Index.
IFAC World Congress, 2017.




Some publications on structural analysis from our group Publications on Structural Analysis from our group

Application studies

Residual generation supported by structural analysis

@ Dilek Dustegér, Erik Frisk, Vincent Coquempot, Mattias Krysander,
and Marcel Staroswiecki.
Structural analysis of fault isolability in the DAMADICS benchmark.
Control Engineering Practice, 14(6):597-608, 2006.

@ Carl Svird and Mattias Nyberg. Residual generators for fault diagnosis
using computation sequences with mixed causality applied to
automotive systems.

IEEE Transactions on Systems, Man, and Cybernetics — Part A:

Systems and Humans, 40(6):1310-1328, 2010. @ Carl Svird and Mattias Nyberg.
. . ; . Automated design of an FDI-system for the wind turbine benchmark.
@ Car .Sva'rc.i, Mattias .Nyberg, ar.1d Erik Fr_ISk' Journal of Control Science and Engineering, 2012, 2012.
Realizability constrained selection of residual generators for fault
diagnosis with an automotive engine application. @ Carl Svird, Mattias Nyberg, Erik Frisk, and Mattias Krysander.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, Automotive engine FDI by application of an automated model-based
43(6):1354-1369, 2013. and data-driven design methodology.

Control Engineering Practice, 21(4):455-472, 2013.
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