
Analysis and Design of Model Based Fault Diagnosis Systems
for Large Scale Models

Exercises to the interactive session

Mattias Krysander and Erik Frisk

July 8, 2017

The exercises in the interactive session are based on a two-tank system. The system is presented in
Section 1 and a model of the system is given in Section 2. Then Section 3 includes the exercises. To
be able to solve the exercises the fault diagnosis toolbox at faultdiagnosistoolbox.github.io
need to be downloaded and installed. The installation procedure is simple; download the zip-
archive, unpack, and add the folder to your Matlab search path. Furthermore the following three
Matlab-files are needed

• skeleton.m - Skeleton file for your solution

• WaterTankModel.m - Model definition

• SimulateWaterTank.m - Function to simulate the water tanks (do not need to be modified)

Some code is given in skeleton.m and you are supposed to complete the solutions in this file. In
WaterTankModel.m the model of the water tank system is defined. The file SimulateWaterTank.m
includes code to simulate the water tanks and do not need to be modified in the exercises.

1 The water tank process

The water tank system is illustrated in Figure 1, with an input signal u and four outputs y1, . . . , y4.
Water is pumped into the upper tank (tank 1) and the control signal u is controlled with respect
to the water level in the upper tank. The tanks have level measurements y1 and y2, and flow
measurements y3 and y4. Table 1 summarizes the faults that are considered in the system.

Table 1: Possible faults in the water tank system.
Fa Actuator fault in the pump.
Fh1 Fault in sensor 1 measuring the water level h1 in the upper tank, tank 1.
Fh2 Fault in sensor 2 measuring the water level h2 in the lower tank, tank 2.
Ff1 Fault in sensor 3 measuring the flow W1 between tank 1 and tank 2.
Fl2 Leakage between sensor 3 and tank 2.
Fl3 Leakage between tank 2 and sensor 4.
Fc1 Partial obstruction (clogging) in the pipe between tank 1 and tank 2.

1

y1

y3

y2

y4

u

FS

FS

Figure 1: A schematic setup of two coupled water tanks. Each tank also has a level sensor (y1 and
y2). The flow out of each tank is measured with a flow sensor (FS) (y3 and y4).

2 A model of the water tank system

A model for the water tank system is obtained from first principles as

A1 · dh1 = Win −W1 (1)
A2 · dh2 = (1− fl2)W1 −W2 (2)

Win = c3u + fa (3)

W1 = (1− fc1)c1
√

h1 (4)

W2 = c2
√

h2 (5)
Ws = (1− fl3)W2 (6)
y1 = h1 + fh1 (7)
y2 = h2 + fh2 (8)
y3 = W1 + ff1 (9)
y4 = Ws (10)

dh1 = d

dt
h1 (11)

dh2 = d

dt
h2 (12)

where Table 2 describes the variables and parameters in the model. The different fault modes
introduced in the system (see Table 1) is modeled as signals or deviations in constant parameters,
e.g., Fa denotes fault mode and fa denotes the modeled fault where fi = 0 means that the
corresponding fault is not present.

2

Table 2: Variables and parameters in the water tank model.
Parameters
Ai Bottom area of tank i.
ci Geometrical constants.
Unknown variables
hi Water level in tank i.
Win Water flow into tank 1.
Wi Water flow out from tank i.
Ws Water flow through sensor y4.

3 Exercises

Different versions of the model (1)-(12) will be used. In Exercises 1-4 we will assume that sensor y1
is not available, in Exercise 5 no sensors is assumed to be installed, and in Exercise 6 that sensor
y3 is not available. All versions of the model are loaded by running the script WaterTankModel.m.

Exercise 1.
a) Run WaterTankModel.m that loads the different versions of the DAE-model (1)-(12). Here

the model model should be used where sensor y1 has been removed.

b) Use the command Lint to see if the model is well defined. What is the degree of redundancy
of the model?

c) Plot the structure of the model with unknown variables, known variables, and faults using
the command PlotModel.

d) Plot the structure of the unknown variables with the equivalence classes and faults using the
command PlotDM.

e) Compute the structural isolability of the model with mixed and integral causality using the
command IsolabilityAnalysis.

Exercise 2. Rewrite the model used in Exercise 1 in state-space form and compute the structural
isolability of this model. The model without faults can be written as

ḣ1 = 1
A1

(
c3u− c1

√
h1

)
(13)

ḣ2 = 1
A2

(
c1
√

h1 − c2
√

h2

)
(14)

y2 = h2 (15)

y3 = c1
√

h1 (16)

y4 = c2
√

h2 (17)

a) The state-space model for the fault free case is given in the script WaterTankModel.m. Extend
this model with the faults and create a new DiagnosisModel object model_statespace.

b) Compare the structural isolability of the two analytically equivalent models and discuss the
results.

Exercise 3. Continue with the model in Exercise 1.

a) Compute all MSO sets and all MTES sets in the model using MSO and MTES respectively.
Compare the difference.

b) Check observability and index of the MSO sets with the commands IsObservable and
IsLowIndex respectively.

3

c) Select a minimum cardinality set of low-index MSO sets or MTES sets to achieve maximum
single fault isolation under integral causality by using TestSelection.

d) Compute the fault signature matrix of the selected tests with FSM and compute the isolability
of these tests with the command IsolabilityAnalysisArrs.

Exercise 4.
a) Generate code for the selected tests. The tests should either be algebraic or sequential

residual generators with integral causality.

As a help consider first the following example. The code for generating a sequential residual
generator for the MSO set {(2), (5), (6), (8), (9), (11)} is

mso1 = [2 5 6 8 9 11];
model.MSOCausalitySweep(mso1)
red1 = mso1(5);
M01 = setdiff(mso1,red1);
Gamma1 = model.Matching(M01);
model.SeqResGen(Gamma1, red1, ’ResGen1’);

Here the 5:th equation in the MSO set, i.e., equation (9), is selected as the redundant equation
and the rest of the equations, in the code stored in M01, are used to solve for all unknown
variables. To choose redundant equation consider the following properties:

i) The causality obtained by looking at the result of MSOCausalitySweep.

ii) Try to avoid selecting a differential constraint as the redundant equation.

The resulting code of the residual generator is stored in ResGen2.m.

b) Run and evaluate the response of the residuals for different fault scenarios using the provided
simulation environment. Try at least the modes NF , Fc1, Fa, and Fh2, which are prepared in
the code, and compare the response of the residuals with the fault signature matrix computed
in Exercise 3d).

Exercise 5. Consider the model model_nosens in this exercise. It describes the water tank system
without any sensors.

a) Check that the model is exactly determined.

b) Specify that h1, h2, Win, W1, and Ws are the possible sensor locations by using PossibleSensorLocations.

c) Compute all minimal sensor sets with maximum possible single fault isolability given that
added sensors cannot fail with SensorPlacementIsolability.

d) Assume that all sensors have faults by using SensorLocationsWithFaults.

e) Compute all minimal sensor sets with maximum possible single fault isolability given sensors
can fail. Compare the results with the solutions obtained in Exercise 5c).

Exercise 6. In this exercise we consider the water tank system without sensor y3. The model is
defined in WaterTankModel.m with the name model_no_y3.

a) Compute the structural isolability of the model with mixed and integral causality.

b) Design a diagnostic system with minimum number of sequential residual generators providing
maximum possible isolability under integral causality.

c) To the diagnostic system developed in Exercies 6b) add a minimum number of sequential
residual generators with arbitrary differential causality in order to obtain maximum single
fault isolability.

d) Evaluate the diagnostic system by comparing the fault response in simulations with the fault
signature matrix.

4

