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Supervision of an industrial gas turbine




Supervision of an industrial gas turbine
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= Model in Modelica, consisting of &~ 2500 equations for the gas turbine

= ~ 80 dynamic states

= monitor the degree of efficiency in compressors, turbines, sensors, ...
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Supervision of an automotive engine
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Supervision of an automotive engine

EGAsysem

Simulink model corresponding to 100-1,000 equations )

6/195



Analysis and design of large-scale diagnosis systems

Definition (Large scale)

Systems and models that can not be managed by hand; that need
computational support.

We do not mean: distributed diagnosis, big data, machine learning,
classifiers, and other exciting fields

Scope of tutorial

| N\

= Describe techniques suitable for large scale, non-linear, models based
on structural analysis

= Support different stages of diagnosis systems design
= Provide a theoretical foundation
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Methods for fault diagnosis

x = Ax + Bu x = g(x,u)

y=Cx y = h(x)
There are many published techniques, elegant and powerful, to address
fault diagnosis problems based on, e.g., state-space models like above.

They might involve, more or less, involved mathematics and formula
manipulation.
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Methods for fault diagnosis

x = Ax + Bu x = g(x,u)
y = y = h(x)
There are many published techniques, elegant and powerful, to address

fault diagnosis problems based on, e.g., state-space models like above.

They might involve, more or less, involved mathematics and formula
manipulation.

This tutorial covers techniques that are suitable for large systems where
involved hand-manipulation of equations is not an option
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Mawn parts of the tutorial

@ Formally introduce structural models and fundamental diagnosis
definitions

@ Derive algorithms for analysis of models and diagnosis systems
= Introduction of fundamental graph-theoretical tools, e.g.,
Dulmage-Mendelsohn decomposition of bi-partite graphs
= Determination of fault isolability properties of a model
= Determination of fault isolability properties of a diagnosis system
- Finding sensor locations for fault diagnosis

@ Derive algorithms for design of residual generators

= Finding all minimal submodels with redundancy
= Generating residuals based on submodels with redundancy
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Objectives

= Understand fundamental methods in structural analysis for fault
diagnosis

= Understand possibilities and limitations of the techniques

* |ntroduce sample computational tools

= Tutorial not intended as a course in the fundamentals of structural
analysis, our objective has been to make the presentation accessible
even without a background in structural analysis

= Does not include all approaches for structural analysis in fault
diagnosis, e.g., bond graphs and directed graph representations are
not covered.
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Software

Fault Diagnosis Toolbox for Matlab

Some key features

= Structural analysis of large-scale DAE models

= Analysis
« Find submodels with redundancy (MSO/MTES)
- Diagnosability analysis of models and diagnosis systems
= Sensor placement analysis

= Code generation for residual generators

« based on matchings (ARRs)
- based on observers

Download — code + documentation

http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/

Ezxperimental code

The code is poorly tested, and I'm sure contains a lot of bugs. Still useful
and we will continue to develop it.

T 7795


http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/

Basic principle - systematic utilization of redundancy

1 equation, 1 unknown, no redundancy J

x = g(uv)
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Basic principle - systematic utilization of redundancy

2 equations, 1 unknown, 1 residual generator J

x = g(u) n=y —gu)
n=x
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Basic principle - systematic utilization of redundancy

3 equations, 1 unknown, 3 residual generators J
x = g(u) n=y —gu)
y=x r2=y2 — g(u)
Y2 =X nR=Yy2—xn
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Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators )
x = g(u) rn=y —gu)
y1=x r» =y —g(u)
Y2 =X B=y2—n
y3=x r4:y3—g(u)
’s=Yy3—x
e =¥3—Y2
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Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators )
x = g(u) rn =y —g(u)
y1=x r» =y —g(u)
Ya=xXx B=y2—n
y3 =X ra =ys —g(u)
’s=Yy3—x
e =¥3—Y2

= Number of possibilities grows exponentially (here ('2’) minimal

combinations)
= Not just y — ¢
= |s this illustration relevant for more general cases?
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Ezxample: Ideal electric motor model
QS

+ 7-m TI
® oL ="=
-7

di
e1: V=iR +Ld—;—|-Kaiw e T=Tm—T) e:yi=i
do
eg:Tm:K;,,i2 e5:E:w € Yy =w
dw dw
J—=T - P — = : =T
€3 Jdt bw € o « € YT

Model summary (9 equations)

Known variables(4): V, yi, v, yT
Unknown variables(7): i, 0, w, a, T, Tp,, Ty, (i, w, 6 dynamic)




Ezxample: Ideal electric motor model
QS

+ 7-m TI
® oL ="=
-7

i
e1:V:iR(1+fR)+Ld—;—|-Kaiw e T=Tm—T eiy=i+f

do
egiTm:Kai2 eS:E:w e8:)/w:w+fw
dw dw
=T - P— = cyr=T+4F
€3 Jdt bw € g =« € 1 yT + fr

Model summary (9 equations)

Known variables(4): V, yi, v, yT
Unknown variables(7): i, 0, w, a, T, Ty, Ty, (i, w, 6 dynamic)
Fault variables(4): g, f;, f,, fT ‘




Structural model

Structural model

A structural model only models that variables are related!

Example relating variables: V, i, w

i
eV = iR(1+fR)+Ld—;+Kaiw

Unknown variables

i 0 w oa T T, T|fa i f, fF|V yi yo yr
el | X X X | X

Coarse model description, no parameters or analytical expressions

Can be obtained early in design process with little engineering effort

Large-scale model analysis possible using graph theoretical tools
Very useful!
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Structural model

Structural model

A structural model only models that variables are related!

Example relating variables: V, i, w

i
eV = iR(1+fR)+Ld—;+Kaiw

Unknown variables

i 0 w oa T T, T|fa i f, fF|V yi yo yr
el | X X X | X

Coarse model description, no parameters or analytical expressions

Can be obtained early in design process with little engineering effort

Large-scale model analysis possible using graph theoretical tools
Very useful!

Main drawback: Only best case results! J
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Structural model of the electric motor

el

e2

e3

ed

e5

e6

e7

e8

e9

= Known variables(4): V, yvi, v, y1

Electric motor

alpha

yi

= Unknown variables(7): i, 6, w, o, T, Tpy, Ty, (i, w, 6 dynamic)
= Fault variables(4): fg, f;, f,, fr

15 /195



Structural model of the electric motor

Equations Variables
e —
€ a
€4 Ti
€2 T
e 7
e3 '
€9 T

= Known variables(4): V, yvi, v, y1
= Unknown variables(7): i, 6, w, o, T, Tp, Ty, (i, w, 6 dynamic)
= Fault variables(4): fg, f;, f,, fr
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Structural model of the electric motor

Faults Equations Variables
fr € —
fo e“ @
fi “ fi
fu “ T
€y I
3 n
€9 T
€7
€s

= Known variables(4): V, yvi, v, y1
= Unknown variables(7): i, 6, w, o, T, Tp, Ty, (i, w, 6 dynamic)
= Fault variables(4): fg, f;, f,, fr
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Structural model of the electric motor

Electric motor

T T T T T T T I T T T T I T T T T
el o ] I . | . .
| |
e2 ° ° | | m
| |
e3 . . | | 9
| |
ed ° ° ° ° | ] ) | ) -
st What can you d|b with thls:5|mple .
6 . piece of ir?formation?lr :
e7 o | ° | ° .
| |
es8 |- ° I ° | ° u
e9 ° I ° I [ B
| |
— z < % - E = 14 = 2 = > = ; 5

= Known variables(4): V, yvi, v, y1
= Unknown variables(7): i, 6, w, o, T, Tp, Ty, (i, w, 6 dynamic)
= Fault variables(4): fg, f;, f,, fr



Structural 1solability analysis of model

Isolability Matrix
T T

R o ®
fi [ ] @
fw ®
fT ®
R fi i T

Nontrivial result

fr and f; can not be isolated from each other, unique isolation of £, and f
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Structural 1solability analysis of model

Isolability Matrix T T
T T
esr . 3
e6 . .
R @ L)
e4 . . . .
e2r . .
fi [ ] [ J i
<] I
gel 7777777777 =T R
o
i} |
el—————— — — — = —4+ - f
fw ®
e3r . .
o - ——— — — — — — — — 1~ - — 1 fT
T [ . _ _
e8»7777777777777T&—« fw
L L L L L L
. . . . th apha T Tm 1 T w
R fi fw T Variables

Nontrivial result

fr and f; can not be isolated from each other, unique isolation of £, and f

16 /195



Sensor placement - which sensors to add?

Q: Which sensors should we add to achieve full isolability?

Choose among {i,0,w,a, T, Tr,, T;}. Minimal sets of sensors that
achieves full isolability are

S ={i}
So={Tn}
S3=A{T;}

Let us add S1, a second sensor measuring i (one current sensor already

used),
Yip =1
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Create residuals to detect and isolate faults

Q: Which equations can be used to create residuals? J
. di . :
el:V=/R(1+fR)+LE+Ka/w e : T=Tm—T e:yi=i+f
do
E'QZTm:Kaiz eS:E:w e Yo =w-+f,
dw dw
%'JE_T_bw eG-E—a eg.yT—T+fT
€10 Yi2 =1

Example, equations {e3, es,e9} = {Jw =T — bw, y,, =w,yT = T} has
redundancy! 3 equations, 2 unknown variables (w and T)

r=Jy,+ by, — y1

Structural redundancy

Determine redundancy by counting equations and unknown variables!
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Create residuals to detect and isolate faults

Q: Which equations can be used to create residuals? )

Analysis shows that there are 6 minimal sets of equations with redundancy,
called MSO sets. Three are

Mo={yo=w,yr=T,Jo=T—bw} =n=yr—Jy,— bw
d
Ms:{V:Lai—}—iR—i—Kaiw, =rn=V-Ly+yiR+ Kyiye
Yw:W7YI:i}
My =...
Mg =...

Me=...
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Fault signature matriz and isolability for MSOs

Q: Which isolability is given by the 6 MSOs/candidate residual generators?J

Fault Signature Matrix

MSO1 [ ]

MSO2 - ® °

MSO3 - ® °

MSO04 ® ® L ]

MSO5 | ® ]

MSO6 - [ ® °
w® T

fi
Fault
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Fault signature matriz and isolability for MSOs

Q: Which isolability is given by the 6 MSOs/candidate residual generators?J

Fault Signature Matrix Isolability matrix for set of ARRs in 'Electric motor*
MSO1 [ ]
R [ ]
Ms02 ® °
MS03 | ) Y fi @
MSO04 ® ® L ]
fw L]
MSO5 | ® ]
[ ®
MSO6 - [ ® °
R fi fw T L L n n
Fault R fi fw T

If | could design 6 residuals based on the MSOs = full isolability J
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Test selection

Q: Do we need all 6 residuals? J
Fault Signature Matrix

MSO1 [ ]
MSO2 ® [ )]
MSO3 ® ®
MSO4 [ ] [ ] ®
MSOS5 ® ®
MSO6 [ ] [ ] ®

® f - T
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Test selection

Q: Do we need all 6 residuals? No, only 4

MsO1

MS02

MSO03

Ms04

MSO5

MS06

Fault Signature Matrix

fw
Fault

MSO1

MSO02

MSO3

MSO4

MSO5

MS06

Fault Signature Matrix, selected tests

®
® ®
® ®
o ®
L L L L
fR fi T
Fault

21,/195



Code generation supported by structural analysis

Q: Can we automatically generate code for residual generator?

For example, MSO M5
{Yo=w,yr=T,Jo =T — bw}

has redundancy and it is possible to
generate code for residual
generator, equivalent to

rp = Jy, + by, — yr
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Code generation supported by structural analysis

Q: Can we automatically generate code for residual generator? J

For example, MSO M> Automatic generation of code

% Initialize state variables
w = state.w;

{Yo=w,yr=T,Jo =T — bw}

h o bl
as redundadnq; and |.’:j|s IpOSS|b e to % Residual generator body
generate code for residua T = yT; % e9

generator, equivalent to w = yw; % e8

_ dw = ApproxDiff (w,state.w,Ts);
r2=Jy,+ by, — y1 r2 = J*xdw+bw-T; % e3
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Design process aided by structural analysis

Diagnosability Sensor
Analysis Selection

Modeling -

Residual

: Code
Generator = Test Selection =

Analysis

Generation

All these topics will be covered in the tutorial J

Presentation biased to our own work )
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Some history

50’s In mathematics, graph theory. A. Dulmage and
N. Mendelsohn, “Covering of bi-partite graphs’
60°s-70’s Structure analysis and decomposition of large systems,
e.g., C.T. Lin, “Structural controllability’ (AC-1974)
90’s- Structural analysis for fault diagnosis, first introduced by
M. Staroswiecki and P. Declerck. After that, thriving
research area in Al and Automatic Control research
communities.
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Outline

@ Structural models and basic definitions
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A structural model - the nominal model

®

@ R L

+

e

T = Kai?

€3

€4 .
CYi =1
Y =W

cyr=T

€5

€6

) di .
V:/R+LE+Ka/w

dw

J— =T — bw

dt
T="Tn—T

Tm TI
Kaw #@l
Tn-T-(D)

Variables types:

= Unknown variables:

= Known variables: sensor
values, known input signals:

= Known parameter values:
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A structural model - the nominal model

@ R L

®

Variables types:

= Unknown variables:

+ Tm TI
POL = ivw, T, T, T)

T~ T 7) = Known variables: sensor
di values, known input signals:
i
e V=IR+ LE + Ksiw V., Yi, Yo YT
. = Known parameter values:
e Tm= K,i?
Zw ? R, L Ky J, b
:J—=T—0b
€3 dt oy
en: T=Tyh—-T,
e yi=1
€6 - Y =W
eriyr=17T
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A structural model - the nominal model

@ R L
= Unknown variables:

T Tw T
® POL = ivw, T, T T

Variables types:

To—Ti£T) = Known variables: sensor
di values, known input signals:
. I )
e V=IR+ LE + Ksiw V., Yi, Yo YT
) = Known parameter values:
&: Tn=Kii* RL;Jb
dw 1] 1 .a. 1]
es: JE =T — bw Common mistakes:
e T=Tm—T, = Consider / as a known
. variable since it measured.
e 1y =1 _ _
= Consider a variable that can
€ Yo =w

be estimated using the
er:yr=1T model, i.e., T, to be a
known variable.
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A structural model - the nominal model

€1 .

€3

€4 .

€5

€6

V:iR+Lﬂ+Kaiw

dt
T = Kai®
dw
J— =T —b
dt w
T="Tn—T
Lyi=i
Yo =W
yr=1T

Bipartite graph:
€1

€2 \

€3 1
€4 w
€5 T
€6 T

e T
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A structural model - the nominal model

e

[SCR
€4 .
€5 .

€p -

. di .
V = /R+LE+Ka/w

T = K,i?
dw
JE:T—bw
T=Tw—T
yi=1

Yo =W
yr=T

Biadjacency matrix:

€1

€2

€3

€4

€5

€6

€7

] [

T _Tw_ T




A structural model with fault information

Fault influence can be included in the model

(S

€3

€4 .

€5

€6

= by fault signals

Ji
V:i(R+fR)+Ld—It+Kaiw
T = Kai?

dw
J— =T —(b+f

™ (b+ fp)w
T=Tn—T,
Lyi=i+f
Y =w Aty
cyr=T+1fr

fr—el

e

fo —e31

|
e 1
4

fi —es

|
fw_’86|

fr—e7)




A structural model with fault information

Fault influence can be included in the model

(S

[SCR
€4 .
[

€6 -

= by equation assumptions/supports

p
omRy+vzm+Lé+Kﬂu

T = Koi®

frR—e1

€2

fo —e31

€4

fi —es

- |
.fw_’86|

Jr—er)




Structural representation of dynamic systems

Structural representation of dynamic systems can be done in a number of
ways.

@ Consider x and x to be structurally the same variable.
@ Consider x and x to be separate variables.
If the variable representing the derivative is denoted x’ the model is
extended with relations on the form
,  dx
X = —
dt
Often, also extend with some causality constraints (e.g. differential or
integral causality)
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Structural representation of dynamic systems

Structural representation of dynamic systems can be done in a number of
ways.

@ Consider x and x to be structurally the same variable.

@ Consider x and x to be separate variables.
If the variable representing the derivative is denoted x’ the model is
extended with relations on the form

o= &
Cdt

Often, also extend with some causality constraints (e.g. differential or
integral causality)

= Choice depend on purpose and objective.

= For analysis purposes, approach 1 is typically most suited.
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Dynamics - not distinguish derivatives

(S

(S

€3

€4 .

€5
€6

er

d
V=ir+L% & Kiw

dt
T = K,i®
dw
:J—=T—-0b
Jdt W
T=Tn—T
Lyi=1
Y =W
yr=T

= Compact description

= Good for analysis

€1

€2

€3

€4

€6

er

7 w




Dynamics -

distinguish deriwatives

e

€3

€4

€5

€6

V =iR+ L' + Kyiw

T = Kai®
cJw' =T — bw
T=Tm—T
Cyi =i

Yo =w
yr=T

—_——— -
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Dynamics - distinguish derivatives

e1: V=IiR+ L'+ Kjiw

ez:Tm:Ké,i2 81' | """"" .‘“i
e3:Juw =T — bw o i
e: T=Tn—T .
e Y= ! L]
€ Yo = W |
ez:yr=1T 46% I:I i
di ¥ |
d :.,:— dy |
o in D
dw S
W= —
209 T

= Add differential constraints
= Used for computing sequential residual generators
= Differential /integral causality 32 /195



Structural properties interesting for diagnosis

Properties interesting both for residual generation, fault detectability and
isolability analysis.

Let M = {e1,e,...,€en} be a set of equations.

Basic questions answered by structural analysis

@ Can a residual generator be derived from M ?
or equivalently can the consistency of M be checked?

@ Which faults are expected to influence the residual?

Structural results give generic answers. We will come back to this later.
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Testable equation set?

" |s it possible to compute a residual from these equations?

€3

€5

€6

€1 .

dw
T =J— + b
dt+ )
=y
W= Yo

. di .
V—IR—LE—Kalwzo

T | w
e3 X X
€5 X
€6 X
€1 X X
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Testable equation set?

" |s it possible to compute a residual from these equations?

d
e3:T:Jd—(:+bw T i w
e'i:y- e3 X X
5 - i es X
€6 - W= Yu e X
.
el:V—iR—Ld—;—Kaiw:O e1 X X

® Yes! The values of w, i/, and T can be computed using equations &g,
es, and ez respectively. Then there is an additional equation e; a
so-called redundant equation that can be used for residual generation

dy;
V—y,-R+Ld—yt—Kay,-yw=o
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Testable equation set?

" |s it possible to compute a residual from these equations?

d
e3:T:Jd—(:+bw T i w
e'i:y- e3 X X
5 - i es X
€6 - W= Yu e X
.
el:V—iR—Ld—;—Kaiw:O e1 X X

® Yes! The values of w, i/, and T can be computed using equations &g,
es, and ez respectively. Then there is an additional equation e; a
so-called redundant equation that can be used for residual generation

dy;
V—-yiR+L—=— —K,yiy, =0
yirk+ dt aYiY
= Compute the residual
dy;
=V —-yviR+L— — Kyyiy,
r YiR + . aYiy.

and compare if it is close to O. 24 /195



Fault sensitivity of the residual?

= Model with fault:
dw

€3 : T:JE—i-(b-Ffb)w ‘T i w
65Zi:yi—ﬁ €3 X X fb
. €5 X f;
RRC e X | £,
di
el:V—i(R—i—fR)_LiI_Kaiw:Oel X X fR

dt



Fault sensitivity of the residual?

= Model with fault:

dw
T =J— b+ f
e3 Jdt+( + fp)w
e i =y —f

e6:w:yw_fw

T w
ez | X X | fp
&5 fi
€6 X fw
X | fg

p
eV —i(R+fr)— Lo — Kyiw =10 ©

dt

= Which faults could case the residual to be non-zero?

r=V-yR+L

dy;

dt

- Ka)/i)/w



Fault sensitivity of the residual?

= Model with fault:
dw

933T:JE+(b+fb)W \T i w
e 1 i=yj—fi sl X X\
€5 X f,
e6:w:yw_fw e X | £,
di
e1:V—i(R+fR)—Ld—;—Kaiw:Oel X X |fr
= Which faults could case the residual to be non-zero?
dy;
=V - iR L - Ka iYw =
r Yik + dt YiY.
df;
=yifr + fi(Kafw —R—yw— fR) — L— — Kayifs,

dt

= Sensitive to all faults except fp.



Fault sensitivity of the residual?

= Model with fault:

d
€3 : T:J7f+(b+fb)w ‘T P w
65Zi:yi—ﬂ €3 X X fb
€5 X f;
% W= Y= b €6 X | £,
di
el:V—i(R—i—fR)_LiI_Kaiw:Oel X X fR

dt

= Which faults could case the residual to be non-zero?

dy;
=V - iR L _Ka iYw =
r YiRk + dt YiY.
df;
:)/ifR+fi(Kafw_R_YW_fR)_LE_KaYifw

= Sensitive to all faults except fp.

= Not surprising since e3 was not used in the derivation of the residual!

35 )/
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Strucutural analysis provides the same information

= Model with fault:

d
€3 : T:J7f+(b+fb)w T i w
65Zi:yi—ﬂ €3 X X fb
€5 X f;
W=yl €6 X | £,
di
el:V—i(R—i—fR)_LiI_Kaiw:Oel X X fR

dt

= Structural analysis provides the following useful diagnosis information:
« residual from {ey, es5, e}

- sensitive to {f;, f,, fr}
= Let’s formalize the structural reasoning!
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Matching

= A matching in a bipartite graph is a pairing of nodes in the two sets.
= Formally: set of edges with no common nodes.
= A matching with maximum cardinality is a maximal matching.

T i w e T
€3 X X fb es i
es X fi
€6 X fw c6 w
el X X|fr . =
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Matching

= A matching in a bipartite graph is a pairing of nodes in the two sets.

= Formally: set of edges with no common nodes.

= A matching with maximum cardinality is a maximal matching.

= Diagnosis related interpretation: which variable is computed from
which equation

T i w
€3 X X fb
€5 X f,
€6 X fw
e X X |fr

€3 m—— ]
€5 i
EG/W
€1
€3
€6 —/-l—vT
Y i e



Dulmage-Mendelsohn decomposition

Xo X, Xp s Xn_1 Xp Xoo

MO

Mt

= M™ is the overdetermined part of model M.
= MO is the exactly determined part of model M.

= M~ is the underdetermined part of model M. o



Dulmage-Mendelsohn decomposition

Xo X Xy Xn_1 Xp Xoo

=

I

I

I

I

I

i

I
MO I

.

Matlab command: dmperm J

Mt

= M™ is the overdetermined part of model M.
= MO is the exactly determined part of model M.

= M~ is the underdetermined part of model M. o



Dulmage-Mendelsohn Decomposition

X1 X2 X3 X4 X5 Xp
1) [ x
2) | X X X X X
(3) X X X
(4) | X X X X
(5) X
(6) | X X

@ Find a maximal matching
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Dulmage-Mendelsohn Decomposition

X1 X2 X3 X4 X5 Xp
1) [ x
2) | X X X X X
(3) X X X
(4) | X X X X
(5) X
(6) | X X

@ Find a maximal matching

@ Rearrange rows and columns
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Dulmage-Mendelsohn Decomposition

X5 X2 Xp X3 X1 Xa
2)[X X X X X
(3) X X X
(4) X X X X
(1) X
(5) X
(6) X X

@ Find a maximal matching

@ Rearrange rows and columns

@ Identify the under-, just-, and over-determined parts by backtracking
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Dulmage-Mendelsohn Decomposition

© 000

©

X5 X2 | Xe X3 | X1 Xi
2) [ X X|[X X X
(3) X X X
(4) X X|XxX X
1) X
(5) X
(6) X X

Find a maximal matching

Rearrange rows and columns

Identify the under-, just-, and over-determined parts by backtracking

Identify the block decomposition of the just-determined part. Erik will

explain later.

Dulmage-Mendelsohn decomposition can be done very fast for large

models.
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Detectable faults

T|i w
€3 X X fb
€5 X f;
€6 X fw
e X X|fg

/\/IjL = {ely €5, 66}

Xt ={i,w}

Faults in MT: {f; f,, fr}

M* = {e1, e3, 65, 6, €7}
X+ — {I’ T,LO}
Faults in M*: {fg, f;, fp, fr,f,, }
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Detectable faults

T|i w
e | X X | 1
€5 X f,
€6 X fw
e X X |fr

Mt = {e1,e5,e6}
Xt ={i,w}
Faults in M*: {f, £,, fr} M+t = {e1,e3,65, 5, €7}

Xt ={i,T,w}

Faults in M*: {fg, i, fp, fr,f,, }

The overdetermined part contains all redundancy.

Structurally detectable fault

Fault f is structurally detectable in M if f enters in M*
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Basic definitions - degree of redundancy

Degree of redundancy

Let M be a set of equations in the unknowns X, then

p(M) = [MT| — |XT]

LT, i T
e i
I
T i w e i
e3 | X X | fp fR—w’l:-“ __I:
! —
€5 X f, f_»er:
€6 X | f, |
fo—>es1 !
€1 X X|fr ! i
fr—=e71 :
| l
M+ = {61,65,66} fo—eq | |
Xt=4Hor . TTITTTrTTTTT
{ ’ } M+ — {61763,65766,67}

AM =3 =21 Xt = {i, T.w)

o(M)=5-3=2
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Basic definitions - overdetermined equation sets

Structurally Overdetermined (SO)

M is SO if (M) > 0
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Basic definitions - overdetermined equation sets

Structurally Overdetermined (SO)

M is SO if (M) > 0

Minimally Structurally Overdetermined (MSO)

An SO set M is an MSO if no proper subset of M is SO.
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Basic definitions - overdetermined equation sets

Structurally Overdetermined (SO)

M is SO if (M) > 0

Minimally Structurally Overdetermined (MSO)
An SO set M is an MSO if no proper subset of M is SO.

Proper Structurally Overdetermined (PSO)

An SO set M is PSO if ¢(E) < ¢(M) for all proper subsets E C M
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Examples - electrical motor

Relation between overdetermined part and SO, MSO, and PSO sets.

T|i w
e | X X | 1
€5 X f,
€6 X fw
el X X |fr

* M ={ei1,e3, 65,6} is SO since
(M) =Mt —|XT|=3-2=1>0

A residual can be computed but it is not sensitive to all faults in M.
= MT = {e1, e5, 65} is SO but also
« PSO since the redundancy decreases if any equation is removed
» MSO since there is no SO subset.

MSO and PSO sets seem to be more promising!



Ezxample - sensor redundancy

{e, @} n=y1—y

€1 :y1=X

{88} in=y1—-y3
€ Yy =X

{e, &3} i3 =yo—y3
€3 :y3 =X

(e, 2,83} i =r}+ 13

= {e1, &2, €3} is Structurally Overdetermined (SO) but not MSO since

* {e1, e}, {e1,e3}, {e2, e3} all are MSO:s

= All above equation sets are PSO since degree of redundancy decreases
if an element is removed.



Ezxample - sensor redundancy

{e, @} n=y1—y

€1 :y1=X

{en,e3} in=y1-y3
€ Yy =X

{e, &3t i3 =y2—y3
€3 :y3 =X

(e, 2,83} i =r}+ 13

= {e1, &2, €3} is Structurally Overdetermined (SO) but not MSO since

* {e1, e}, {e1,e3}, {e2, e3} all are MSO:s

= All above equation sets are PSO since degree of redundancy decreases
if an element is removed.

Properties
= M PSO set < residual from M sensitive to all faults in M

= MSO sets are PSO sets with structural redundancy 1.

= MSO sets are sensitive to few faults, which is good for fault isolation.
= MSO sets are candidates for residual generation
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Conclusions so far

Structural properties:

Properties

= M PSO set < residual from M sensitive to all faults in M
= MSO sets are PSO sets with structural redundancy 1.

= MSO sets are sensitive to few faults which is good for fault isolation.
= MSO sets are candidates for residual generation

MSO and PSO models characterize model redundancy, but faults are not
taken into account.

Next we will take faults into account.
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Erample: A state-space model

To illustrate the ideas | will consider the following small state-space model

with 3 states, 3 measurements, and 5 faults:

e1: xx=-xx+u+h

&: X=x1—2x%+x3+0b
€3 . X3::X2—>&Q

€: y1=xx+f3

&: y2=x2+fy

&: y3=x3+fs

r1 T2 X3
€1 X
e | X X X
€3 X X
€4 X
(&5 X
€ X

x; represent the unknown variables, v and y; the known variables, and f;

the faults to be monitored.
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MSO sets

There are 8 MSO sets in the model

Equations Faults
/VISOl {63,65,65} {f4,f5}
M502 {63764766} {f3,f5}
MSO3 {64,65} {f},,ﬁl}
MSO4 {61762763,65} {fl,fg,fg;}
MSO5 {61762,63,65} {fl,fg,ﬁ;}
MSO(, {61,62763,64} {f]_,f2,f3}
MSOz | {e1, €2, 65,66} | {1, o, fa, f5 }
MSOg | {e1, e, es, 66} | {f1, 2, f5, f5}

In the definitions of redundancy, SO, MSO, and PSO we only considered
equations and unknown variables.

But who cares about equations?

We are mainly interested in faults!



First observation: All MSO sets are not equally ”good”

Tests sensitive to few faults give more precise isolation.

Equations

Faults

MSO;
MSO,
MSOs
MSO4
MSOs
MSOg
MSO7
MSOs

{e3, 5,66}
{33764766}
{es, es}

{e1, €2, 3,66}
{e1,e, 63,65}
{e1,e, 63,64}
{6’1, €2, €5, 6'6}
{e1, e, €4, 66}

{fa, f5}

{f, f5}

{f, fa}
{fi, h, 15}
{f, f, fa}
{f, h, 1}
{fi,h, fa, 15}
{f,f, B, f5}

Faults(MSO:), Faults(MSO.), Faults(MSOs) C Faults(MSO7)
Faults(MSO5), Faults(MSO,), Faults(MSOg) C Faults(MSOg)
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First observation: All MSO sets are not equally ”good”

Tests sensitive to few faults give more precise isolation.

Equations Faults
MSOl {e3,e5,e6} {ﬂ;,fs}
M502 {63,64,66} {fé,ﬁ',}
MSO3 {64,65} {fé,ﬂl}
MSO, | {e1, €2, 63,66} | {1, 2, f5}
MSO5 {61762,63,65} {fl,fz,ﬁ;}
MSOg | {e1, €2, €3, €1} | {1, 2, 3}
MSO7 | {e1, e, 65,65} | {f1, 2, fa, f5}
MSOs | {e1, e2, €1, 66} | {1, 2,3, f5}

Faults(MSO:), Faults(MSO.), Faults(MSOs) C Faults(MSO7)
Faults(MSO5), Faults(MSO,), Faults(MSOg) C Faults(MSOg)

MSO7 and MSOg are not minimal with respect to fault sensitivity I
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Second observation: Sometimes there are better test sets

A residual generator based on the equations in MSO; will be sensitive to
the faults:

Fau,ts({el7 e2) e57 eﬁ}) = {fiu f'27 f47 f5}
Adding equation e3 does not change the fault sensitivity:

FaUItS({ela €2, €3, 65, eﬁ}) — {fia f27 f47 ﬁ_)}
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Second observation: Sometimes there are better test sets

A residual generator based on the equations in MSO; will be sensitive to
the faults:

Faults({e1, e, es,e6}) = {1, f2, fa, f5 }
Adding equation e3 does not change the fault sensitivity:

FaUItS({e]_, €2, €3, €5, eﬁ}) = {ﬁ.a f27 f47 ﬁ_)}

There exists a PSO set larger than MSO; with the same fault sensitivity. l
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Third observation: There are too many MSO sets

Consider the following model of a Scania truck engine
Original model:

T = 532 equations
5 " = 8 states
| EGR‘)Q
o | Ve ey = 528 unknowns
[ ] turbine restriction
o 1 manios >=-=) = 4 redundant eq.
Pin> Tin ° Pems Tom Pesr T
L N r. ™ 3 actuator faults
= 4 sensor faults
=
compressor
W,

emp

There are 1436 MSO sets in this model.
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Third observation: There are too many MSO sets

Consider the following model of a Scania truck engine
Original model:

T = 532 equations
5 Y = 8 states
) EGR‘)@
o | Ve ey = 528 unknowns
[ ) turbine restriction
S — Gram > = 4 redundant eq.
Pin> Tin ° Pews Teom Py Ty
L n r. ™ 3 actuator faults
(‘—‘1 n,, T,
= 4 sensor faults
=
compressor

W,

emp

There are 1436 MSO sets in this model.

There are too many MSO sets to handle in practice and we have to find a
way to sort out which sets to use for residual generator design.
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Questions

Equations

Faults

MSO;
MSO,
MSOs
MSO4
MSOs
MSOs
MSO7
MSOs

{e3, 5,66}
{e3, €1, 66}
{es, 65}
{e1,e, €3, 66}
{6’1, €2, €3, 65}
{e1,e,€3,64}
{e1,e,e5,66}
{e1, e, €4, 66}

What distinguish the first 6 MSO sets?

{fa, f5}

{f, f5}

{f, fa}
{fi,h, 6}
{fi,h, fa}
{f, h, 1}
{fi,h, fa, 15}
{fi,h,f3,f5}



Questions

Equations

Faults

MSO;
MSO,
MSOs
MSO4
MSOs
MSOs
MSO7
MSOs

{e3, 5,66}
{e3, €1, 66}
{es, 65}
{e1,e, €3, 66}
{6’1, €2, €3, 65}
{e1,e,€3,64}
{e1,e,e5,66}
{e1, e, €4, 66}

Is it always MSO sets we are looking for?

{fa, f5}

{f, f5}

{f, fa}
{fi,h, 6}
{fi,h, fa}
{f, h, 1}
{fi,h, fa, 15}
{fi,h,f3,f5}



Questions

How do we characterize the PSO set MSO; U {e3}, which has the
properties

= |t is not an MSO set.

= It has the same fault sensitivity as an MSO set.



Fundamental questions

= Which fault sensitivities are possible?

= For a given possible fault sensitivity, which sub-model is the best to
use?
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Answers
Let F(M) denote the set of faults included in M.

Definition (Test Support)

Given a model M and a set of faults F, a non-empty subset of faults
¢ C F is a test support if there exists a PSO set M C M such that
F(M) =¢.

Definition (Test Equation Support)

An equation set M is a Test Equation Support (TES) if
Q@ M is a PSO set,
@ F(M) # 0, and
@ for any M’ > M where M’ is a PSO set it holds that F(M') D F(M).

v

MSO; is not a TES since

FaUItS({E]_, €2, 65, eﬁ}) = FaUItS({E]_, €2, €3, 65, eﬁ}) = {ﬁ.a f’27 f47 f5}
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Answers

Definition (Minimal Test Support)

Given a model, a test support is a minimal test support (MTS) if no
proper subset is a test support.

Definition (Minimal Test Equation Support)

A TES M is a minimal TES (MTES) if there exists no subset of M that is

a TES.

v
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Erample

Equations Faults
MSO]_ {63765,66} {f4,f5}
M502 {63,64,66} {f},,ﬁ;}
MSO3 {64765} {f3,ﬂ1}
MSOy | {e1, €2, 63,66} | {1, 2, f5}
MSO5 {61762,63,65} {fl,fg,ﬁl}
MSOs | {e1,e2,€3,e4} | {f1, 2, 3}
MSO7 | {e1, e, 65,65} | {f1, 2, fa, f5}
MSOsg | {e1,e2,€4,66} | {f1, 2,13, f5}

= The MTES are the first 6 MSO sets. (fewer MTESs than MSOs)
= The 2 last not even a TES.
= The TES corresponding to last TS:s are {e1, e, €3, €5, €6 },

{e17 €2, €3, €4, 66}



Summary

Consider a model M with faults F.

TS/TES
= ( C Fisa TS < there is a residual sensitive to the faults in ¢

= The TES corresponding to { can easliy be computed.

MTES are
= typically MSO sets.
= fewer than MSO sets.
= sensitive to minimal sets of faults.

| N\

= sufficient and necessary for maximum multiple fault isolability

= candidates for deriving residuals
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Outline

@ Diagnosis system design
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Design system design supported by structural methods

Diagnosability Sensor

Modeling —/ Analysis Selection

Residual Code

Generation

Generator Test Selection
Analysis
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Diagnosis system design

A successful approach to diagnosis is to design a set of residual generators
with different fault sensitivities.

Designing diagnosis system utilizing structural analysis
@ Find (all) testable models (MSO/MTES/...)
@ Select a subset of testable models with required fault isolability

@ From each selected testable model generate code for the
corresponding residual.

Algorithms covered here
= Basic MSO algorithm

| N\

= Improved MSO algorithm
= MTES algorithm
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Dulmage-Mendelsohn decomposition

A cornerstone in the MSO-algorithm is the Dulmage-Mendelsohn
decomposition.

Xo Xy Xo o X X, Xoo

®)

= In this algorithm we will only use it to find the overdetermined part
M of model M because
= All MSO sets are contained in the overdetermined part.
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Finding MSO sets

= MSO sets are found by alternately removing equations and computing
the overdetermined part.

r1 X9 T3 T4
D[ X X
2| x X
B)|Xx X X
(4)
(5) X
(6) X
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Finding MSO sets

= MSO sets are found by alternately removing equations and computing
the overdetermined part.

T ol s
b

PP
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Finding MSO sets

= MSO sets are found by alternately removing equations and computing
the overdetermined part.

Tr1 X9 | Tz T4
JERY e e
\L} bY PaY
2) ] X X
3 X X X
(4)
(5) X
(6) X

Properties of an MSO:
= A structurally overdetermined part is an MSO set if and only if
# equations = # unknowns +1

= The degree of redundancy decreases with one for each removal.
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Basic algorithm

= Try all combinations

T2 T3

Sl
P

AN AN AN AN S S
O U W N =
S N e e N N N

R T I

= Remove (1)



Basic algorithm

= Try all combinations

N - ;
2| x X

3| X X X
(4) X
(5) X X
(6) X
(7) X

= Remove (1)
= Get overdetermined part



Basic algorithm

= Try all combinations

= Remove (1)

— IVI Lo T3 aif = Get overdetermined part
\t) * * « Remove (4)

(2) X X

B3| X X X

(4) X

(5) X X

(6) X

(7) X
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Basic algorithm

= Try all combinations

= Remove (1)

—

Lo T3 = Get overdetermined part

« Remove (4)
- Get overdetermined part

il
P

=~ W

ot

(@)
<
P | |

\]

AN AN AN AT T T

65,195



Basic algorithm

= Try all combinations

= Remove (1)

1 T2 T3 T4 = Get overdetermined part
(1> X X = Remove (4) _
<2> X X - Get overdetermined part
3) | x x X ~ (6)(7) MSO!
(4 A%
N -
(5) X X
(6) X
(7) X
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Basic algorithm

= Try all combinations

= Remove (1)

H
—_

Lo T3 = Get overdetermined part

« Remove (4)
- Get overdetermined part

— (6)(7) MSO!
= Remove (5)

alals
P

IBZEREE
>
S I



Basic algorithm

= Try all combinations

= Remove (1)

1 T2 T3 ¥4 = Get overdetermined part
(1> X X = Remove (4)
(2> X X - Get overdetermined part
(3) X X X = (6)(7) MSO!
- Remove (5)
<4) X = Get overdetermined part
i X—2X
(6) X
(7) X
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Basic algorithm

= Try all combinations

= Remove (1)

1 T2 T3 ¥4 = Get overdetermined part
(1> X X = Remove (4)
(2> X X - Get overdetermined part
(3) X X X = (6)(7) MSO!
- Remove (5)
s%z 5 o = Get overdetermined part
(J) B B = (6)(7) MSO!
(6) X
(7) X
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Basic algorithm

= Try all combinations

= Remove (1)

H
—_

Slalall
P

Lo T3 = Get overdetermined part

« Remove (4)

- Get overdetermined part
= (6)(7) MSO!

= Remove (5)

= Get overdetermined part
= (6)(7) MSO!

« Remove (6) ...

IBZEREE
>
S I



Basic algorithm

= Try all combinations

= Remove (1)
= Get overdetermined part

« Remove (4)
- Get overdetermined part

— (6)(7) MSO!

= Remove (5)

- Get overdetermined part
~ (6)(7) MSO!

« Remove (6) ...

= Remove (2) ...

T2 T3

Sl
P

SECICCOCG
>
N e (B



Basic algorithm

The basic algorithm is very easy to implement.
In pseudo-code (feed with MT):

1 function M spo = FindMS0O(M)
2 if p(M)=1

3 Muso = {M}
4+ else

5 Mmpso = 0
6 for each e e M

P M = (M\ {e})*

8 Mupuyso := MuysoU FindMSO(M/)
9 end

10 end
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The same MSO set is found several times

= Example: Removing (1) and then (4) resulted in the MSO (6)(7).

= Remove (4)

BIP X
2| X X

3)| X X X
(4) X
(5) X X
(6) X
(7) X
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The same MSO set is found several times

= Example: Removing (1) and then (4) resulted in the MSO (6)(7).

= Remove (4)

X
T2 & = Remove (1)

Sl
P P

P e
o | o S

R L T B R
~N O U = W N
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The same MSO set is found several times

= Example: Removing (1) and then (4) resulted in the MSO (6)(7).

= Remove (4)

_ i} Ta T3 ai;l = Remove (1)
E;ﬁ o : - (6)(7) MSO!
(3)| X X .

(4 X

) N

(5) X X

(6) X

(7) X

= If the order of removal is permuted, the same MSO set is obtained.
= Permutations of the order of removal will be prevented.
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The same MSO set is found several times

= Removal of different equations will sometimes result in the same
overdetermined part.

&
\)

X3

B

W N
b < | 8
<

S ot

P |

~~ |~
~ N
S e N N e e
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The same MSO set is found several times

= Removal of different equations will sometimes result in the same
overdetermined part.

1 T2 | I3 T4
O [ X X
(3) X X X
(4) X
(5) X X
(6) X
(7) X
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The same MSO set is found several times

= Removal of different equations will sometimes result in the same
overdetermined part.

1 T2 | g T4
)| X X
@) | x X
—_— X
1) X
(5) X X
(6) X
(7) X
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The same MSO set is found several times

= Removal of different equations will sometimes result in the same
overdetermined part.

1 T2 | g T4
)| X X
@) | x X
—_— X
1) X
(5) X X
(6) X
(7) X

Exploit this by defining equivalence classes on the set of equations
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FEquivalence classes

Let M be the model consisting of a set of equations. Equation e; is related
to equation ¢; if

e & (M\{eg})"

It can easily be proven that this is an equivalence relation. Thus, [e]
denotes the set of equations that is not in the overdetermined part when
equation e is removed.

FEquivalence classes

The same overdetermined part will be obtained independent on which
equation in an equivalence class that is removed.
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Unique decomposition of an overdetermined part

To X3

e | 5
P P

SIECICCCGE
<
MR e (B
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Unique decomposition of an overdetermined part

My = {(1)(2)(3)} X1 = {x1, %}

W DN H
R o
>

P |

A~~~ N~ o~
-~ O O~
~— — — — | — —
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Unique decomposition of an overdetermined part

x €T T T4 Ml = {(1)(2)(3)} Xl = {X1,X2}
1 2 3 _ o
1) | X X Mo = {(4)(5)} Xo = {x3}
(2) X X
B)| X X X
4 g
(5) X | X
(6) X
(7) X
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Unique decomposition of an overdetermined part

My = {(1)(2)(3)} X1 = {x, %}
My = {(4)(5)} Xo = {x3}
Mz = {(6)} X3 =2

To | I3

W N =
s | S
e

|1 |~
S— | | N — | — — —

ot

an

S e LT e I

-J
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Unique decomposition of an overdetermined part

- N o, <

SsSSS
S N
5 aflae
g =

S [P >

AvA)
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Unique decomposition of an overdetermined part

M= {D@E)  Xi={ax)
YL T2 %3 M = {(4)(5)} % = {x)
Ty Ms = {(6)} X3 =2
M = {(7)} Xo =0
X X Xo = [xa)

SoECecE
>
Ml | (B
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Unique decomposition of an overdetermined part

o oo e | My = {(1)(2)(3)} X1 = {x1, x}

1 "2 /°31-4 My = {(4)(5)} Xo = {x3}
E;; § Y X Ms = {(6)} X3=0
3)| X X x M=) Xa =2
@ X %o = bl
(5) X | x
(6) X
(7) X

= [Mi| = |Xi| +1
= All MSO sets can be written as a union of equivalence classes, e.g.
{(6)(7)} = Mz U M,
{(4)(5)(6)} = M2 U M3
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FEquivalence classes

Any PSO set can be written on the canonical form

X1 XXy, Xo

This form will be useful for
@ improving the basic algorithm (now)
@ performing diagnosability analysis (later)
Can be obtained easily with attractive complexity properties
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Lumping

= The equivalence classes can be lumped together forming a reduced

structure.
Original structure: Lumped structure:

X1 X2 | X3 | Xa
(1) X X ‘ X4
(2) | X X My ={(1)(2)(3)} | X
3| X X X My ={(4)(5)} X
(4) X Ms ={(6)} X
(5) X | X My ={(7)} X
(6) X
(7) X




Lumping

= The equivalence classes can be lumped together forming a reduced

structure.
Original structure: Lumped structure:

X1 X2 | X3 | Xa
(1) X X ‘ X4
(2) | X X My ={(1)(2)(3)} | X
3| X X X My ={(4)(5)} X
(4) X Ms ={(6)} X
(5) X | X My ={(7)} X
(6) X
(7) X




Lumping

» The equivalence classes can be lumped together forming a reduced

structure.
Original structure: Lumped structure:

X1 X2 | x3 | X
(1) | X X | x4
()| X X M ={(D@)G)} | X
)| x X X My ={(4)(5)} | X
(4) X Mz ={(6)} X
(5) X | X My ={(7)} X
(6) X
(7) X

= There is a one to one correspondence between MSO sets in the
original and in the lumped structure.

= The lumped structure can be used to find all MSO sets.



Improved algorithm

= The same principle as the basic algorithm.
= Avoids that the same set is found more than once.

@ Prohibits permutations of the order of removal.
© Reduces the structure by lumping.
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Lets consider this example again

e1: x3=-x3+u+nf

e: Xxx=x1—-2x2+x3+h
€3 X3:X2—3X3

e: yi=x2+f3

es: y2=Xx2+14

&: y3=x3+fs

r1T X2 X3
€1 X
e | X X X
€3 X X
€4 X
€5 X
€6 X

x; represent the unknown variables, v and y; the known variables, and ;

the faults to be monitored.
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MSO algorithm: We start with the complete model

{617 €2, €3, €4, €5, 66}

L1 T2 I3
€1 X
e | X X X
€3 X X
€4 X
€5 X
€6 X

75/195



MSO algorithm: Remove e; and compute (M \ {e})*"

{637 €4, €5, e6}

{617 €2, €3, €4, €5, eﬁ}

Tr1 X2 I3
CT X
ea | X X X
€3 X X
€4 X
€5 X
€g X
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MSO algorithm: Remove e3

{ea, €5}

{es, es, €5,€6}

{61, €2, €3, €4, €5, 66}

Iy T2 I3
Ve
CTT 7%
e | X X X
A% A%
l/d <X <X
€4 X
€5 X
€g X
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MSO algorithm: Go back and remove e

{ea, €5}

{637 €4, €5, 66}

{61, €2, €3, €4, €5, 66}

{63, €5, 66}
r1 T2 I3
N
CT ZY%
es | X X X
€3 X X
AV
CT x
€5 X
€g X
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MSO algorithm: Go back and remove es

{ea, €5}

{es, es,€5,€6}

{61, €2, €3, €4, €5, 66}

{63,65,66} {63764766}
r1 T2 I3
N
CT ZY%
es | X X X
€3 X X
€4 X
Ave
CE) )N
€g X
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MSO algorithm: Go back 2 steps and remove e3

{ea, €5}

{es, es,€5,€6}

{617 €2, €3, €4, €5, 66}

{617 €2, €4, €5, 66}

{63765766} {63;64766}
Tr1 X2 X3
€1 X
es | X X X
A% A%
l/d < X < X
€4 X
€5 X
€g X
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MSO algorithm: Remove e

{617 €2, €3, €4, €5, 66}
{63764765766} {81762764765,66}

{64,65} {63765766} {63;64766} {61;62765766}

Tr1 X2 X3
€1 X
e | X X X
a X A%
l/d X X
A
9%} X
€5 X
€g X
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Summary - MSO algorithm

= An algorithm for finding all MSO sets for a given model structure
= Main ideas:
© Top-down approach
@ Structural reduction based on the unique decomposition of
overdetermined parts
@ Prohibit that any MSO set is found more than once.

An Efficient Algorithm for Finding Minimal Over-constrained Sub-systems
for Model-based Diagnosis, Mattias Krysander, Jan Aslund, and Mattias
Nyberg. |IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 38(1), 2008.
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MTES algorithm

| will now present the algorithm that finds all MTESs and TESs.

A Structural Algorithm for Finding Testable Sub-models and Multiple
Fault Isolability Analysis., Mattias Krysander, Jan Aslund, and Erik Frisk

(2010). 21st International Workshop on Principles of Diagnosis (DX-10).
Portland, Oregon, USA.

It is a slight modification of the MSO algorithm.



MTES algorithm

| will now present the algorithm that finds all MTESs and TESs.

A Structural Algorithm for Finding Testable Sub-models and Multiple
Fault Isolability Analysis., Mattias Krysander, Jan Aslund, and Erik Frisk
(2010). 21st International Workshop on Principles of Diagnosis (DX-10).
Portland, Oregon, USA.

It is a slight modification of the MSO algorithm.

Basic idea

There's no point removing equations that doesn't contain faults, since we
are interested in fault sensitivity.
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MTES algorithm

| will now present the algorithm that finds all MTESs and TESs.

A Structural Algorithm for Finding Testable Sub-models and Multiple
Fault Isolability Analysis., Mattias Krysander, Jan Aslund, and Erik Frisk
(2010). 21st International Workshop on Principles of Diagnosis (DX-10).
Portland, Oregon, USA.

It is a slight modification of the MSO algorithm.

Basic idea

There's no point removing equations that doesn't contain faults, since we
are interested in fault sensitivity.

Modification

Stop doing that!
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MTES algorithm

In the example e3 is the only equation without fault.

We will not remove e3

{617 €9, €3, €4, €5, 66}
{es, eq, €5, €6} {e1, €9, €4,€5, 66}

{64,65} {63,65766} {63764,66}
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MTES algorithm

We remove e, instead.

{617 €9, €3, €4, €5, 66}
{63764765,66} {6176276/1565:86} {61762763,65,66}

{64,65} {63,65766} {63764,66}

84 /195



MTES algorithm

{61762,63764,65,66}
{63,64765,66} {61732764565:66} {61,62763,65,66}

{64,65} {63,65766} {63764,66} {61,62,63766} {61762763,65}

The nodes are TES:s and the leaves are MTES:s.
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All T'Ss and TESSs for the model

The algorithm traverses all TESs

{f1: f2, fs, fas f5}

{ela €2,€3,€4,¢€s5, 66}

{fs, fa, [5} {15 fo, fas f5} {f1, fas f3, f5} {f1, fas f3, fa}

{63,64,65766} {61;8276&65766} {81762,63,64766} {61,62,63764765}

{f47f5} {f37f5} {f37f4} {f17f27f5} {f17f27f4} {f17f27f3}

{63;65766} {637€4a66} {€4ae5} {617627€3a66} {61,62,63,65} {61,62,63764}



Scania truck engine example

3
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Original model:

532 equations

8 states

528 unknowns

4 redundant eq.
3 actuator faults

4 sensor faults



Scania truck engine example

Original model:

I ] P = 532 equations

= 38 states

Equations

= 528 unknowns

= 4 redundant eq.

= 3 actuator faults

E=======—==c===c===SR LR

Variables

= 4 sensor faults
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Scania truck engine example

: = . Original model:
;;;;f;;;;;;;if,:,m = 532 equations
KN i = 8 states
: : f = 528 unknowns
\\ i = 4 redundant eq.
| ™ 5 . = 3 actuator faults

— = 4 sensor faults

= Reduces the resulting number of testable sets:
« 1436 MSO sets cmp. to 32 MTESs which all are MSOs.
= Only 6 needed for full single fault isolation.

* Reduces the computational burden:

. 1774 PSO sets ~ runtime MSO-alg. (2.5 s)
« 61 TESs ~ runtime MTES-alg. (0.42 s)
« Few number of faults cmp to the number of equations.
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Test selection

= Many candidate residual generators (MSOs/MTESs) can be
computed, only a few needed for single fault isolation.

= Realization of a residual generator is computationally demanding.

Careful selection of which test to design in order to achieve the specified
diagnosis requirements with few tests.
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Problem formulation

Fault Signature Matrix Isolability matrix for set of ARRs in ‘Electric motor*

MsO1 [ ]
R ()
MSO02 L] L]
Ms03 ° ° fi ®
MsO4 ® L ] L]
w ®
MSOs ® L]
" ®
MSO6 L] [ ] [ ]
R T

fw
Fault R fi fw T

Test selection problem

Given:

= A fault signature matrix (e.g. based on MSO sets/MTES)

= A desired fault isolability (e.g. specified as an isolability matrix)
Output: A small set of tests with required isolability
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Fault isolability of tests

INF A £
T/I0 X 0
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Fault isolability of tests

| NF A £ T no alarm = NF, f;, f» consistent
T/I0 X 0 T alarm = f; consistent
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Fault isolability of tests

| NF A £ T no alarm = NF, f;, f» consistent
T/I0 X 0 T alarm = f; consistent

fi detectable f1 isolable from £, f> not isolable from f;

3
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Fault isolability of tests

| NF A £ T no alarm = NF, f;, f» consistent
T/I0 X 0 T alarm = f; consistent

fi detectable f1 isolable from £, f> not isolable from f;

Vot i

= Isolability of tests and diagnosis systems is not symmetric
= Different from isolation by column matching
I
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Test selection 1s a minimal hitting set problem

Requirement for each desired diagnosabil-

Fault Signature Matrix

ity property:
wsoz e o Detectability:
| fRZ Tl = {3,4,5,6}
MSO5 | ® ° |So|abl|lty
fr isol.from f;: T, = {3,5}
e I * f; isol.from fg: T3 = {1}
S . fr isol.from f,: T, = {5,6}

h
Fault
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Test selection is a minimal hitting set problem

Fault Signature Matrix Requirement for each desired diagnosabil-

ity property:

Msoz | ° ° Detecta b|||ty

' fr: T1 ={3,4,5,6}

MSO5 | ° ° |SO|abI|Ity
fr isol.from f;: T, = {3,5}

i ¢ f; isol.from fg: T3 = {1}

S . fr isol.from f,: T, = {5,6}

i
Fault

Test selection T

A minimal set of tests T is a solution if T N T; # () for all desired
diagnosability properties i.
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Test selection

= Find all minimal test sets with a minimal hitting set algorithm.

Might easily lead to computationally intractable problems.

J. De Kleer, BC Williams. " Diagnosing multiple faults”. Artificial
intelligence 32 (1), 97-130, 1987. J
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Test selection

= Find all minimal test sets with a minimal hitting set algorithm.

Might easily lead to computationally intractable problems.

J. De Kleer, BC Williams. " Diagnosing multiple faults”. Artificial
intelligence 32 (1), 97-130, 1987. J

= Find an approximate minimum cardinality hitting set

A greedy search for one small set of tests. Fast with good complexity
properties, but cannot guarantee to find the smallest set of tests.

Cormen, L., Leiserson, C. E., and Ronald, L. (1990). Rivest, " Introduction
to Algorithms.”, 1990. J
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Test selection

= Find all minimal test sets with a minimal hitting set algorithm.

Might easily lead to computationally intractable problems.

J. De Kleer, BC Williams. " Diagnosing multiple faults”. Artificial
intelligence 32 (1), 97-130, 1987. J

= Find an approximate minimum cardinality hitting set

A greedy search for one small set of tests. Fast with good complexity
properties, but cannot guarantee to find the smallest set of tests.

Cormen, L., Leiserson, C. E., and Ronald, L. (1990). Rivest, " Introduction
to Algorithms.”, 1990. J

= |terative approach involving both test selection and residual
generation.
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Test selection

Many more alternatives in for example:

De Kleer, Johan. "Hitting set algorithms for model-based diagnosis.” 22th
International Workshop on Principles of Diagnosis, DX, 2011. J




Erample

NF | fr| fi

fuo

fr

3—-6

3,55,

3,4

- 11,614

fr
fi | 1,4,6
fus

2-4 2,3

3,4

NN |

fr|256

2,5/15,6| —

= Minimal test sets for full single fault isolability: {1,2,4,5},

{1,2,3,5}, {1,2,3,6}

= Assume that we do not care to isolate fr and f;, i.e., the desired

isolability can be specified as:

| fr fi f, fr
fr|1 1 0 O
11 1 0 O
f,]0 0 1 0
fr10 0 0 1

= Minimum cardinality solution: {2,4,6}



Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

Gk NF | f | f
n % X fi1,2,4|—2,4|1,4
217 % Al 1,3 |3 — | 1
3
o | 5 | 23 (3| 2| -

v
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

|4 % & NF B | B | f
)X X f —[2,4
n|X X é ST
r3 X X
ol 5 Al 23 3] 2 -

= Select residual generator 1. Realization pass.

v
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

|4 % & NF B | | f
n X X fl — 4
rn X X f2 B 7_
r3 X X 3 3 3 — —
r X 3 )

= Select residual generator 1. Realization pass.

= Select residual generator 2. Realization fails.
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

R NF A 6 | f
n X X fl — 4
rn X X . 7_
r X X f2
rg X 9 N N

= Select residual generator 1. Realization pass.
= Select residual generator 2. Realization fails.

= Select residual generator 3. Realization pass.
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

i h K
rn ‘ X X ‘ NF E | &
n|X X - —
r X X f2
rg X 9 N N

= Select residual generator 1. Realization pass.
= Select residual generator 2. Realization fails.

= Select residual generator 3. Realization pass.

= Select residual generator 4. Realization pass.
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Greedy search incorporating residual generation

Basic idea

Select residuals adding the most number of desired diagnosis properties.

Realizability Constrained Selection of Residual Generators for Fault
Diagnosis with an Automotive Engine Application. Carl Svard, Mattias
Nyberg, and Erik Frisk (2013). In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 43(6):1354-1369.

= Select residual generator 1. Realization pass.
= Select residual generator 2. Realization fails.
= Select residual generator 3. Realization pass.

= Select residual generator 4. Realization pass.
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Outline

@ Residual generation
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Residual generation and structural analysis

= Structural analysis of model can be of good help

= A matching gives information which equations can be used to (in a
best case) compute/estimate unknown variables

= Careful treatment of dynamics

= Again, not general solutions but helpful approaches in your diagnostic
toolbox

Two types of methods covered here

= Sequential residual generation

= Observer based residual generation
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Sequential residual generation

Basic idea
Given: A set of equations with redundancy
Approach: Choose computational sequence for the unknown variables and
check consistency in redundant equations

= Popular in DX community
= Easy to automatically generate residual generators from a given model

= choice how to interpret differential constraints, derivative/integral
causality

= Interesting, but not without limitations
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Sequential residual generation

5 equations, 4 unknowns

e1: x31—x=0 X1 X2 X3 X4
. 9 _ e1 X X
e: x3—x4=0
] € X X
€3: X4x1+2x0x4 —y1 =0 e | X X X
e: x3—y3=0 es X
&: x2—y2=0 és X
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Sequential residual generation

5 equations, 4 unknowns

e1: x31—x2=0 X1 Xo X4 X3
. . €5 X
: x3—x4=0
€2 -3 4 e | X X
e3: xax1+2x0x4 —y1 =0 | X X X
e: x3—y3=0 & X
es: xo—y» =0 €4 X
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Sequential residual generation

5 equations, 4 unknowns

(S )'(1 — X2 = 0 X1 X2 X4 X3
i . €5 X
: x3—x4=0
€2 -3 4 e | X X
€3: X4x1+2x0x4 —y1 =0 5| X X X
es: x3—y3=0 ) X
e: xo—yr=0 €4 X

Solve according to order in decomposition:

€ :Xx3:=y3

v
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Sequential residual generation

5 equations, 4 unknowns

e1: x31—x2=0 X1 Xo X4 X3
i . €5 X
e: x3—x4=0
N , e | X X
€ : xax1+2xox4 —y1 =0 | X X X
es: x3—y3=0 ) X
e: xx—y»=0 €4 X
Solve according to order in decomposition:
€ :X3:=Y3 € X4 = X3

99 /195



Sequential residual generation

5 equations, 4 unknowns

e1: x31—x2=0 X1 Xo X4 X3
. €5 X
e: x3—x3=0
. €1 X X
€3: X4x1+2x0x4 —y1 =0 el X X X
es: x3—y3=0 ) X
es: x2—y2=0 €4 X
Solve according to order in decomposition:
€ :X3:=Y3 € X4 = X3
e . XXty
€3 1 X1 ‘= X2 e1.x2.:2—
X4
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Sequential residual generation

5 equations, 4 unknowns

e1: x31—x2=0 X1 Xo X4 X3
. €5 X
e: x3—x3=0
i 5 €1 X X
€3: X4x1+2x0x4 —y1 =0 | X X X
e: x3—y3=0 & X
es: x2—y2=0 €4 X
v
Solve according to order in decomposition:
€ :X3:=Y3 € X4 = X3
L Xty
€3 1 X1 ‘= X2 € Xp = ——
2X4
Compute a residual:
€ r:=ys—Xxo )
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Basic principle - Sequential residual generation

Basic approach
@ Given a testable set of equations (MSO/MTES/...)

@ Compute a matching (Dulmage-Mendelsohn decomposition)

@ Solve according to decomposition (numerically or symbolically)

@ Compute residuals with the redundant equations
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lllustrative example

1 . 1
e1iq1=R—V1(P1—P2) € . p2 = C—(ql—qz) € Y3 =qo

e23q2:—1 (P2 — p3) e6:.b3:i(Q2—Q3) e1oiP1=ﬂ
Ry2 Cr3 dt

1 . dps
63-CI3—R—V3(P3) & yY1=p e11-P2—I
. 1 . dp
e4¢P1:C—T1(QO—CI1) ey = G e1zip3=d—t3
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Find overdetermined sets of equations

There are 6 MSO sets for the model, for illustration, use

M :{e17 €4, 65, €7, €3, €9, €10, 6‘11}

Redundancy 1: 8 eq., 7 unknown variables (qo, 91, g2, p1, p2, p1, P2)

er:qr=5—(p1—p2) eriy1=p e 'bzﬂ

1-41 RVl 1 - )1 1 10 - M1 dt
. 1 ) dps

e4:p1=C—Tl(qo—q1) e y2 = q2 en:p ="
_ 1

eS3P2:C_T2(CI1_q2) € Y3 = Qo

Redundant equation

For illustration, choose equation es as a redundant equation, i.e., compute
unknown variables using (e1, €4, €7, €s, €9, €10, €11)
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Compute a matching

. 1 . . dp:
e1-CIl:R7Vl(P1—P2) €7 Y1 =p1 e10-P1:I
e4il51=i(CI0—q1) €Y= q2 6111P2=d£

CT1 dt
€ 1 y3 = Qo
pPL P2 qo q1 G P1 P2
e | X X X
ey X X X
ez | X
€g X
€y X
€10 X X
€11 X X
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Compute a matching

. 1 . . dp:
e1-CI1:R7Vl(P1—P2) €7 Y1 =p1 610-P1:I
e4il51=i(CI0—CI1) €Y= q2 6‘111[52=dﬂ

CT1 dt
€ 1 y3 = Qo
P2 p2 g1 pP1 Pt qo Q2
€11 X X
e X X X
€4 X X X
€10 X X
€7 X
€y X
€g X
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Computational graph for matching

P2 P2 g1 PL PL G0
€11 X
€1 X X X
€ X X X
€10 X X
€7 X
€9 X
€g X
€7
Y1 I Y4t I P1

€9 €10 q b2 —’I—>p2
Y3 —-|—> q0 e4 €1 €11 €5

Equations e;g and e;7 in derivative causality.
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Residual generator code

Fairly straightforward to generate code automatically for this case )

Q2 = y2; % e8

q0 = y3; % e9

pl = y1; % e7

dpl = ApproxDiff(pl,state.pl,Ts); % el0
ql = qO0-CT1xdpl; % e4

p2 = pl-Rvixql; % el

dp2 = ApproxDiff (p2,state.p2,Ts); % ell
r = dp2-(q1-92)/CT2; % €5
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Causality of sequential residual generators

Deriwative causality
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Causality of sequential residual generators

Derivative causality
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Causality of sequential residual generators

Derivative causality
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Causality of sequential residual generators

= Derivative causality

+ No stability issues
- Numerical differentiation highly sensitive to noise

= |ntegral causality
- Stability issues
+ Numerical integration good wrt. noise

= Mixed causality - a little of both

Not easy to say which one is always best, but generally integration is
preferred to differentiation
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Matching and Hall components

&
T i w] € — T

€3 X X fb ¥ —_— s /

€5 X f; ? \

€6 X | T r

ol X X|fa yi YT /;1

€5

Here the matching gives a computational sequence for all variables J
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Matching and Hall components

€3
T | w ‘ €6 - T
e X X fb y — /
€5 X f; w \
€6 X fw r
a| X X|fr i T /:.1
€5

Here the matching gives a computational sequence for all variables J

This is generally not true I
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Hall components & Dulmage-Mendelsohn decomposition

M- @

o)

= The blocks in the exactly determined part is called Hall components

= |f a Hall component is of size 1; compute variable x; in equation ¢;

= If Hall component is larger (always square) than 1 = system of
equations that need to be solved simultaneously
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Hall components and computational loops

5 equations, 4 unknowns

€1 .

€3 .
[V

€5 .

x1—x0=0
x3—x4 =0
XxaX1 +2xox4 —y1 =0
x3—y3=0
x—y2=0

X1 X2 X4 X3
€5 X

€1 X X

el X X X

& X

€4 X

= Two Hall components of size 1 and one of size 2
(X37 64) — (X47 62) — ({X17X2}7 {617 65})

= If only algebraic constraints = algebraic loop
= If differential constraint = loop in integral causality

A matching finds computational sequences, including identifing
computational loops

TTO7 95




Observer based residual generation

The basic idea in observer based residual generation is the same as in
sequential residual generation

@ Estimate/compute unknown variables X
@ Check if model is consistent with X

With an observer the most basic setup model/residual generator is

X:g(X,U) ),.\(:g()?7u)+K(y_h()?7u))
y = h(x,u) r=y— h(x,u)

Design procedures typically available for state-space models
= pole placement

= EKF/UKF/Monte-Carlo filters
= Sliding mode

Submodels like MSE/MTES are not typically in state-space form!
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DAFE models

DAE model

An MSO/submodel consists of a number of equations gj, a set of dynamic
variables x1, and a set of algebraic variables x»

gi(dX1,X1,X2,Z,f):0 i:].,...,n

Xm = —X1

dt

= A DAE model where you can solve for highest order derivatives dx;
and x», is called a low-index, or low differential-index, DAE model.

= Essentially equivalent to state-space models

For structurally low-index problems, code for observers can be generated J
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Ezxample: Three Tank example again

€1

€3

€4 :

g1 =

Q2=

g3 =

p1

1

Rv1 (Pl - Pz)
1

RV2 (p2 - P3)
1

Tm(p3)

1
= Cfﬂ(% - Ch)

€6 -

€g

. 1
= —

Cra
. 1
3= ——
P Crs3
=p1
Y2 = Q2

(1 — @)

(g2 — g3)

€ 1 Y¥3=dqo
. dp1
6101P1:Ti
) dp,
€11 - P2 = dt
.. _ dps
6‘12-P3—I
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Ezxample: Three Tank example again

1 . 1
el:qlzRivl(pl_PZ) 653P2:C7T2(q1—CI2) € Y3 = qo
. dp
€10 : P1 = 7dt1
) dp,
& y1=p1 6'111P2=dt

. 1
642P1ZC7T1(Q0—Q1) € Y2 = Q2

MSO M = {e1, es, e5, €7, eg, €9, €10, €11}
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Ezxample: Three Tank example again

1 . 1
€1 :q1= 7(P1 - P2) € . P2 = 7(671 - qz) € )Y2 = Q2
Rvi Cro
. 1
e4:p1:C7T1(qo—q1) e :y1=p1 € :y3 = qo

MSO M = {e1, es, 65, €7, €3, €9, €10, €11}

This is not a state-space form, suitable for standard observer design
techniques. But it is low-index so it is close enough.
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Ezxample: Three Tank example again

1 . 1
€1 :q1= 7(P1 - P2) € . P2 = 7(611 - qz) € Y2 = Q2
R\/l CT2
. 1
e4:p1:C7(qo—q1) e :y1=p1 € :y3 = qo
T1
MSO M = {e1, e, es5, €7, €g, €9, €0, €11}

This is not a state-space form, suitable for standard observer design
techniques. But it is low-index so it is close enough.

Partition model using structure

Dynamic equations Algebraic equations Redundant equation

. 1 = (G — vy
p1 = C—(qo — ql) 0= qo0 y3 r=mwi pP1
lTl 0=qiRvi — (p1 — p2)
P2:C_(q1—<72) O=q—y
T2

4
TS



Partition to DAFE observer

Partition model using structure

Dynamic equations Algebraic equations Redundant equation

. 1 — .
p1 = —(qo — Ch) 0= do — y3 r=yi—p1

ClTl 0=q1Rv1 — (p1 — p2)
P2:C_(ql_q2) 0=q2—y>
T2
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Partition to DAFE observer

Partition model using structure
Dynamic equations Algebraic equations Redundant equation

. 1 — .
p1 = C—(qo — Ch) 0= do — y3 r=yi—p1

1 0=gqgiRvi—(p1 — p2)
PzZC—(Ch—CIz) O0=q—y
T2

v

DAE observer

i 1 . . .
Pr= (Go — G1) + Kur 0=3q0—y3
T1
i .. . N A
P2:—C (G1 — G2) + Kor 0= GgiRv1 — (P1 — p2)
T2
0=G4 -y
O=r—yi+p

.
114 /195




Models with low differential index
A low-index DAE model

gi(dxy, x1,x2,2z,f) =0 i=1

dxi=—x3 Ii=1,...,m
1 X1
has the property

Jdg  Og
Odxq Oxo

Structurally, this corresponds to a maximal matching with respect to dx;
and xo in the model structure graph.

full column rank
X=X0, Z=20
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Models with low differential index
A low-index DAE model

gi(dxy, x1,x2,2z,f) =0 i=1

g ooy

da=—x3 i=1....m

dt
has the property

full column rank
X=X0, Z=20

Jdg  Og
Odxq Oxo

Structurally, this corresponds to a maximal matching with respect to dx;
and xo in the model structure graph.

Model can be transformed into the form
).(1 = gl(Xl,Xz,Z, f)
0
0= go(x1, %2, 2, 1), g6z is full column rank
8X2
0 = gr(x1,x2,2,f)
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DAE observer for low-index model

For a model in the form
x1 = gi(x1,x,2,f)
0
0 = go(x1, X2, 2, f), /e is full column rank

8X2
0= gr(X17X2vz7 f)
a DAE-observer can be formed as
);21 = gl(),%l?)?% Z) + K()?’ Z)gr()?l,)?Q,Z)
0 = go(X1, X0, 2)

The observer estimates x; and x», and then a residual can be computed as

r=g/(%1, %, 2)

Important: Very simple approach, no guarantees of observability of
performance J
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DAE observer for low-index model

The observer

A

1= g1(R1, X0, 2) + K(R,2)g (X1, %2, 2)
0= g(%1,%,2)

r= gr()?ly)?% Z)
corresponds to the standard setup DAE

gl()?lu)?sz)—i_ K()?v z)gr()?l))lbaz)
Mw = 82(%1, %2, 2) = F(w,2)
r— gr(x1, %2, 2)

where the mass matrix M is given by

M:< In, 0”1><(”2+nr) )
O(nz-i-nr)xm 0(”2+”r)><(”2+”r)
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Run the residual generator

Low-index DAE models and ODE solvers

A dynamic system in the form
Mx = f(x)
with mass matrix M possibly singular, can be integrated by (any) stiff

ODE solver capable of handle low-index DAE models.
Example: odel5s in Matlab.

= Fairly straightforward, details not included, to generate code for
function f(x) above for low-index problems

= Code generation similar to the sequential residual generators, but only
for the highest order derivatives

= Utilizes efficient numerical techniques for integration
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Outline

@ Diagnosability analysis
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Problem formulation

Given a dynamic model: What are the fault isolability properties? J
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Problem formulation

Given a dynamic model: What are the fault isolability properties?
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Diagnosability analysis

Diagnosability analysis

Determine for a
@ model
@ diagnosis system

which faults that are structurally detectable and what are the structural
isolability properties.
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Diagnosability analysis

Diagnosability analysis

Determine for a
@ model
@ diagnosis system

which faults that are structurally detectable and what are the structural
isolability properties.

MSO based approach

Since the set of MSOs characterize all possible fault signatures, the MSOs
can be used to determine structural isolability of a given model.
Often computationally intractable. Just too many.
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Diagnosability analysis

Diagnosability analysis

Determine for a
@ model
@ diagnosis system

which faults that are structurally detectable and what are the structural
isolability properties.

MSO based approach

Since the set of MSOs characterize all possible fault signatures, the MSOs
can be used to determine structural isolability of a given model.
Often computationally intractable. Just too many.

Better way

Utilize steps in the MSO algorithm; equivalence classes!

122 /195



Isolability matrices

Interpretation

A X in position (i,j) indicates that fault f; can not be isolated from fault f;

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'
T T T T T T T T T T T T

fraft @ @ 4
waf @ @ 4
fomegat ® 4

fvol | ) 4

fwih - ® o 1
fxthl - ® o 1
fypic | ® 1
fypim ® .
fyTic |- ® j
fywaf [

fpaf fwaffomegatfvol fWwec fWwic fwth fxthl fypic fypim fyTic fywaf
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Diagnosability analysis for a set of tests/model

A test/residual with fault sensitivity

i h
r{ X 0

makes it possible to isolate fault 1 from fault f.

IS
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Diagnosability analysis for a set of tests/model
A test/residual with fault sensitivity

i h
r{ X 0

makes it possible to isolate fault f; from fault f». Now, consider single
fault isolability with a diagnosis system with the fault signature matrix

i h £
X X 0
0 X X

rn
r
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Diagnosability analysis for a set of tests/model

A test/residual with fault sensitivity

i h
r{ X 0

makes it possible to isolate fault f; from fault f». Now, consider single
fault isolability with a diagnosis system with the fault signature matrix

i h £
X X 0
0 X X

rn
r

The corresponding isolability matrix is then

A 6 K
A X X 0
10 X 0
10 X X



Structural fault modelling

A fault f only violates 1 equation, referred to by er. I

125 /195



Structural fault modelling

A fault f only violates 1 equation, referred to by er. l

If a fault signal f appears in more than one position in the model,

e1:0=gi(x,x2) +f
e :0=ga(x1,x2) + f

@ Introduce new unknown variable x¢

@ Add new equation xf = f

Now, the model fulfills the assumption.
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Structural fault modelling

A fault f only violates 1 equation, referred to by er. l

If a fault signal f appears in more than one position in the model,

e1: 0 =gi(x1,x) + xr
e 1 0 = go(x1,x) + xr
€3 I Xf = f

@ Introduce new unknown variable x¢

@ Add new equation xf = f

Now, the model fulfills the assumption.
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Structural detectability and Dulmage-Mendelsohn

Detectability

A fault f is structurally detectable if ef € M.
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Structural detectability and Dulmage-Mendelsohn

A fault f is structurally detectable if ef € M. I

Xo XX o X X Xe
My i
_____________ I
| ® L
M, E i @ i i
| ! i : = Fault 4 not detectable
1 | ! |
M | @---“m | | = Fault f, detectable
v | | o
. @
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Detectability in small example

€1 .
€
€3 :
€4
€5 :

€6 .

x| =
Xp =
X3 =
X4 =
X5 =
n
Yo =

—X1 + X2 + X5
—2x0 + X3 + x4
—3x3+x5+H+H
—4x4 + x5+ f
—5xs +u+1fy

X1

X3
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Detectability in small example

€1: X1 =-—X1+ X2+ X5

& Xo=—-2x0+4+Xx3+ x4
es: x3=-3x3+xs+h+h
e: Xa=—4x4+x+ 13
es: Xxs=—bxg+ut+fy

€% : Yi1=X1

€7 y2=X3
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Structural 1solability

A fault F; is isolable from fault F; if O(F;) € O(Fj)

Meaning, there exists observations from the faulty mode F; that is not
consistent with the fault mode F;.

= Structurally, this corresponds to the existence of an MSO that include
e, but not ef

x|
olh
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Structural 1solability

A fault F; is isolable from fault F; if O(F;) € O(Fj)

Meaning, there exists observations from the faulty mode F; that is not
consistent with the fault mode F;.

= Structurally, this corresponds to the existence of an MSO that include
e, but not ef

Fi F
ri X 0
= or equivalently, fault F; is detectable in the model where fault F; is

decoupled

Structural isolability

F; structurally isolable from F; iff e € (M \ {eg}) "

Structural single fault isolability can thus be determined by n%
M+ -operations. For single fault isolability, we can do better. .




FEquivalence classes and isolability
From before we know that M of a model can be always be written on the

canonical form

M,
M,

n+1 L2222
;W

= Equivalence classes M; has the defining property: remove one
equation e, then none of the equations are members of (M \ {e})*
= Detectable faults are isolable if and only if they influence the model in

different equivalence classes
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Isolability from fault f3 in small example

€e1: X1 =—X1+x2+ X5
e: X2=-—2x+x3+ x4
e3: Xx3=—3x3+ x5+ i+

e: Xg=—4x4+ x5+
6. Xxs=-bxst+u+f
€& Y1 =X1
& Y2=Xx3
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Isolability from fault f3 in small example

€e1: X1 =—X1+x2+ X5
e: X2=-—2x+x3+ x4
e3: Xx3=—3x3+ x5+ i+

e: Xg=—4x4+ x5+
6. Xxs=-bxst+u+f
€& Y1 =X1
& Y2=Xx3
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Isolability from fault f3 in small example

€e1: X1 =—X1+x2+ X5
e: X2=-—2x+x3+ x4
e3: x3=-3x3+x5s+Ff+0h

e: Xg=—4x4+ x5+
6. Xxs=-bxst+u+f
€& Y1 =X1
& Y2=Xx3

Equivalence class [eq]

lea) = {e1, e, €e4,66}
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Method - Diagnosability analysis of model

Method

@ Determine equivalence ol
classes in M™
« Mg, = M\ {er} el

- [ef] = MT\ M
Q@ Faults appearing in the

same equivalence class
are not isolable

@
i
I

Equations
o
(2]

@ Faults appearing in
separate equivalence [
classes are isolable s+ — —— — — — — q—————1

— f1, f2

@
w
I

e7 °

L L L L
x1 x2 x4 x3 x5
Variables
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Ezample system - A automotive engine with EGR/VGT
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Ezample system - A automotive engine with EGR/VGT

flo EGR cooler

fo =P Uogr

EGR valve
fi
Wegr \ f
ol 1
7 (] fi2 .
vgt /
)| @] W T | 4 2!
plm . Tem >‘_
Intake . l\ J Turbine
anifold Exhaust
fantio [ ) manifold
f
W fa Cylinders w = ls
th £
Uth 8 fl
| p { i
N We X
P, )
fi1 Intake throttle Intercooler Compressor

132
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Model structure

Structural Model of A Single Turbo Petrol Engine
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Dulmage-Mendelsohn with equivalence classes

e39
e53
el2
e52
el3
e2l
e37

Equations
(o] (o] [¢]
B R
o O B

o
=
]

el9
e20
e25
e57
e26
e60
e27

Teo TtidpemdTT turbovglddbmegagc Tqtxfpaktac Plc xtbmedgashdad/f xwg
Variables
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Fault isolation matrix for engine model

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'

fpaf- @ @ i
waf @ @ E

fomegat |- [ ] E

fwih [ I J ]
fxthl - e o ]
fypic - ® 4
fypim ® 4
fyTic ® 4
fywaf - @ -

fpaf fwaffomegatfvol fWc fWwic fwth fxthl fypic fypim fyTic fywaf
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Diagnosability analysis for a fault signature matrix

Isolability properties of a set of residual generators

Previous results: structural diagnosability properties of a model, what
about diagnosability properties for a diagnosis system

Fault Signature Matrix

mso1 | o A test with fault sensitivity

msoz f ° ° f; f/
rn X

MSO3 + [ ] [ ]

isolates fault f; from f;.

o . For example, MSO2 isolates
@ Fault f,, from fg and £,
uscsl e @ ° @ Fault fr from fg and f;

fi
Fault
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Diagnosability analysis for a fault signature matrix

Fault Signature Matrix Isolability matrix for set of ARRs in 'Electric motor*
MSO1 e
R [
MSsO2 [ ] [ ]
MSO03 | ° ® fi )
MS04 - ® ® ®
fw ®
MSOS5 | o [ ]
T ®
MSO06 | [ ] [ ] [ ]
R fi fw T n I L n
Fault R fi fw T

Rule: Diagnosability properties for a FSM

Fault f; is isolable from fault f; if there exists a residual sensitive to f; but
not f;
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A word on fault isolation and exoneration

P

M0 0 1 1 !
Hl1 1 0 1

My|1 0 1 0

Mz|1 1 0 1 |0 0 1 0

3 f,l0 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are

different?
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A word on fault isolation and exoneration

11 0 0 O

M0 0 1 1
= L1 1 0 1

Mo|1 0 1 O
M 1 1 0 1 |0 0 1 0
3 10 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are

different?
A: We do not assume exoneration (= ideal residual response), exoneration

is a term from consistency based diagnosis, here isolation by column

matching
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A word on fault isolation and exoneration

A1 0 0 O

My |0 0 1 1
= L1 1 0 1

M| 1 0 1 O
Mz |1 1 0 1 il 00 10
3 fh /0 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are

different?
A: We do not assume exoneration (= ideal residual response), exoneration

is a term from consistency based diagnosis, here isolation by column

matching

CBD diagnosis

r1>J
r2>J
v
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A word on fault isolation and exoneration

A1 0 0 O

My |0 0 1 1
= L1 1 0 1

M| 1 0 1 O
Mz |1 1 0 1 il 00 10
3 fh /0 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are

different?
A: We do not assume exoneration (= ideal residual response), exoneration

is a term from consistency based diagnosis, here isolation by column

matching

CBD diagnosis

n>J=Fforf
rn>J=forkf
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A word on fault isolation and exoneration

11 0 0 O

M0 0 1 1
= L1 1 0 1

Mo|1 0 1 O
Msz|1 1 0 1 i) 00 1 0
3 /0 0 0 1

Q: Why is not the isolability matrixdiagonal when all columns in FSM are
different?

A: We do not assume exoneration (= ideal residual response), exoneration
is a term from consistency based diagnosis, here isolation by column
matching

CBD diagnosis

Minimal consistency based diagnoses with
n>J=Fforf = no exoneration assumption:

n>J=forfs Dy = {f}, D2 = {f1,fa}

v
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Fault isolation and exoneration

Fault f3 occurs at t = 2 sec.
A h B
M0 O 1 1
M|l 0 1 0
Mz |1 1 0 1

Diagnosis result

No exoneration assumption

0 — 2.5 : No fault
25—6:forfy
6— : 1z

With exoneration assumption

0 — 2.5 : No fault
2.5 — 6 : Unknown
6— : 13

v
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Outline

@ Sensor placement analysis
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A motivating example and problem formulation

e1: X1 =—X1+x2+ X5
e&: Xo=—2x0+ X3+ Xa
e3: x3=-3x3+x5s+FH+0hH
e: xp=—4x4+x5+H
6. Xs=-bxst+u+f
Question: Where should | place sensors to make faults fi, ..., f4 detectable

and isolable, as far as possible?
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A motivating example and problem formulation

e1: X1 =—X1+x2+ X5
e&: Xo=—2x0+ X3+ Xa
e3: x3=-3x3+x5s+FH+0hH
e: xp=—4x4+x5+H
6. Xs=-bxst+u+f
Question: Where should | place sensors to make faults fi, ..., f4 detectable

and isolable, as far as possible?

For example:

= {x1}, {x2}, {x3,x4} = detectability of all faults

= {x1,x3}, {x1,xa}, {x2,x3}, {x2,xa}, {x3,%2} =
maximum, not full, fault isolability of f1,...,fs

= {x1,x1,x3} = Possible to isolate also faults in the new sensors
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A motivating example and problem formulation

e1: X1 =—X1+x2+ X5
e&: Xo=—2x0+ X3+ Xa
e3: x3=-3x3+x5s+FH+0hH
e: xp=—4x4+x5+H
6. Xs=-bxst+u+f
Question: Where should | place sensors to make faults fi, ..., f4 detectable

and isolable, as far as possible?

For example:

= {x1}, {x2}, {x3,x4} = detectability of all faults

= {x1,x3}, {x1,xa}, {x2,x3}, {x2,xa}, {x3,%2} =
maximum, not full, fault isolability of f1,...,fs

= {x1,x1,x3} = Possible to isolate also faults in the new sensors

More than one solution, how to characterize all solutions?

142/ 195



Minimal sensor sets and problem formulation

Given:
= A set PP of possible sensor locations

= A detectability and isolability performance specification
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Minimal sensor sets and problem formulation

Given:
= A set PP of possible sensor locations

= A detectability and isolability performance specification

MINIMAL SENSOR SET

A multiset S, defined on P, is a minimal sensor set if the specification is
fulfilled when the sensors in S are added, but not fulfilled when any proper
subset is added.
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Minimal sensor sets and problem formulation

Given:
= A set PP of possible sensor locations

= A detectability and isolability performance specification

MINIMAL SENSOR SET

A multiset S, defined on P, is a minimal sensor set if the specification is
fulfilled when the sensors in S are added, but not fulfilled when any proper
subset is added.

v
PROBLEM STATEMENT

Find all minimal sensor sets with respect to a required isolability
specification and possible sensor locations for any linear
differential-algebraic model
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A Structural Model

e .

€3 :
€y .

€5 .

X1 =

X2

X3 =

Xg =

X5

—X1 + X2 + X5
—2x0 + X3 + X3
—3x3 + x5+ f1 + F
—4x4 + x5 + 3
—bxs +u+fa

€1

€2

€3

€4

T xTo T3 Ty

fi—

|
|
|
|
| fo—
|
|
|
|
|
I




Detectability

= Assume that a fault  only violate 1 equation, er.

A fault f is structurally detectable if ef € MT. I
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Detectability

= Assume that a fault  only violate 1 equation, er.

A fault f is structurally detectable if ef € MT.

Xo A X o X X Xe
M| o\ i i
M E O i i
| ! ! : = Fault f1 not detectable
i ' i 1
Mot | E G ! = Fault f, detectable
v | s |
M. ' @___»
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Sensor Placement for Detectability

€1 .
[So2
€3
€4
€5 .

€6 -

X1 = —X1 + X2 + X5
Xo = —2Xp + X3 + Xa
x3=-3x3+x5+hH+FH
X4 = —4x4 + x5 + 3
x5 = —5xg +u-+fy

Yy =X

€1

€2

€3

€4

€5

€6

Measure x5 = {7}
L1 L2 L3 L4 L5

i
e
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Sensor Placement for Detectability

€1 .
€
es
€4
€5

€6 -

X1 = —X1 + X2 + X5
Xp = —2x0 + x3 + x4
x3=-3x3+xs+hH+Hh
X4 = —4xq + x5+ f3
x5 = —5xg +u-+fy

Yy =X

€1

€2

€3

€4

€5

€6

Measure x5 — {fs}
T T2 T3 Lq L5

i
e
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Sensor Placement for Detectability

€1 .
€
es
€4
€5

€6 -

X1 = —X1 + X2 + X5
Xp = —2x0 + x3 + x4
x3=-3x3+x5s+hH+5hH
X4 = —4x4 + x5 + 13
X5 = —5x5 + U+ 13

Y = x4

€1

€2

€4

€5

€6

Measure x4 — {f3, 11}
T T2 I3 Ty Iy
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Sensor Placement for Detectability

Measure x3 — {f, 2, fa}

&: Y=Xx3

1 €2 €3 Ty X5
2
) |
e Xx1=-—-x1+x +x5 ey ! |
) |
e: Xp=—2X+ X3+ Xa I I
. |
ea: x3=-33+x5+h+h es | ;1 bs
. |
er: xa=—-4x4+x5+ 13 | 2
es: Xs=-bxs+u+fy :
|
|
|
|
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Sensor Placement for Detectability

Measure xo — {f1,f, f3,fa}

i L2 T3 _ T4 X5
s
el: X1 =-—x1+X2+ X5 e : by :
&: Xo=-2x+4+Xx3+ x4 1 !
. |
& 3=-3a+x5+A+h e hi b3
e : Xx4=—4x4+x5+H : f2
es: x5=-5xstu+fy €4 : f3 by
&6: Y=x :
€5 : f4 b5
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Sensor Placement for Detectability

Measure x; — {f1, 2, f3,fa}
T T2

€1: X1 =—X1+ X2+ X5
&: Xo=-2x+4+Xx3+ x4
e3: x3=-33+x5s+Ff+5H
e Xa=—4x4+x+ 1
es: Xg=—bxgt+ut+fy

&6: yY=2x1
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Define a Partial Order on b;

Partial Order on b;
b; > bj if element (i, /) is shaded
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Define a Partial Order on b;

Partial Order on b;

b; > bj if element (i, /) is shaded

Let ; measure a variable in b; then

all equal and lower ordered blocks are included in the overdetermined part.
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Define a Partial Order on b;

Partial Order on b;

b; > bj if element (i, /) is shaded

Let ; measure a variable in b; then

all equal and lower ordered blocks are included in the overdetermined part.
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Minimal Sensor Sets - Detectability

Detectability Set

D([f;]) = measurements that give detectability of fault f;

= all variables in equal and higher ordered blocks
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Minimal Sensor Sets - Detectability

Detectability Set

D([f;]) = measurements that give detectability of fault f;

= all variables in equal and higher ordered blocks

€1 bl
e ! by ! D(f) = {x1, x2, x3}
635 1 N ' _ D(h) = {x,%,xs}
: f2 b4 D(fi’)) {XlaX2aX4}
e“i fS_’ | , / D(fa) = {x1,x2, X3 Xa, X5 }
65: f4—’ | 5
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Minimal Sensor Sets - Detectability

Sensor set for detectability

S is a sensor set achieving detectability if and only if S has a non-empty
intersection for all D(f;).

A standard minimal hitting-set algorithm can be used to obtain the
minimal sensor sets.
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Mainimal Sensor Sets - Detectability

Sensor set for detectability

S is a sensor set achieving detectability if and only if S has a non-empty
intersection for all D(f;).

A standard minimal hitting-set algorithm can be used to obtain the
minimal sensor sets.

D(f) = {x1,x2,x3}

D(f) = {x1,x2,x3} X xo }, {x3, X
DE) = Paay  Chbenbed
D(fa) = {x1, x2, x3,xa, x5 }
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Sensor placement for isolability

f; is isolable from f if there exists a residual r

such that
fif
r{ X 0
Ty Ty
fi—el i
fa—e2
€3
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Sensor placement for isolability

f; is isolable from f; if there exists a residual r

such that
fi
r{X 0
T1 o Ty _
fi——er : Isolability characterization: f; is structurally
; isolable from f; if er € (M \ {ef})".
2—> €2
€3 :
|
fs—ea|
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Sensor placement for isolability

f; is isolable from f if there exists a residual r

such that
fi
ri X 0
Xy _xz_
fi——er : Isolability characterization: f; is structurally
; isolable from f; if e € (M \ {es})*.
2—> €2
f3 is isolable from f; in M = {e1,...,es} and f3
e3

is detectable in M\ {e1}
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Sensor placement for isolability

f; is isolable from f if there exists a residual r

such that
fif
r{X 0
Xy _$2_
fi——er : Isolability characterization: f; is structurally
; isolable from f; if e € (M \ {es})*.
2—> €2
! f3 is isolable from f; in M = {e;,...,es} and f
63: is detectable in M\ {e;}
fs—es :L__ The sensor placement problem of achieving isola-

bility from f; in M is transformed to the problem
of achieving detectability in M\ {e1}.

Proceed as in the linear case to achieve isolabil-
ity.
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Sensor placement for maximal isolability

1 xy T3 T4 Ts = detectability necessary for

______ isolability
“ = minimal sensor sets: {xi},
N L Db {eoa)
2
[ ' = add e.g. measurement x1
I —>
es | fi
| Ja—
|
|
|
€5 : Ja—
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Sensor placement for maximal isolability

= detectability necessary for
isolability

= minimal sensor sets: {xi},
{x}, {x3,%}

= add e.g. measurement x1

= all faults are detectable
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Making faults 1solable from f

1 Lo 3 T4 T = Which faults are isolable from

_____ fi with existing sensors?

€1

| [
€2 | I

[
o h—
R

[

[
€4 | f3

[

[
€5 | Ja—

€6
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Making faults 1solable from f

= Which faults are isolable from
fi with existing sensors?

= no faults are isolable from
fi

152/ 195



Making faults 1solable from f

= Which faults are isolable from
fi with existing sensors?

= no faults are isolable from
fi

= Applying the detectability
algorithm gives detectability
sets

D(f3) = {x3, x4}
D(fa) = {x3,xa, x5}
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Making faults isolable from f

= Which faults are isolable from
fi with existing sensors?

= no faults are isolable from
f

= Applying the detectability
algorithm gives detectability
sets

D(f3) = {x3,x}
D(fs) = {x3,xa,x5}
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Achieving mazimum isolability

= detectability sets for maximum isolability

isolate from {fi, 2} : {x3,xa}
isolate from f3: {x3,xa} = {x3}, {xa}

isolate from fy : {x2, x3, xa, X5 }

= measurement x; was added to achieve detectability
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Achieving mazimum isolability

detectability sets for maximum isolability

isolate from {fi, 2} : {x3,xa}
isolate from f3: {x3,xa} = {x3}, {xa}

isolate from fy : {x2, x3, xa, X5 }

= measurement x; was added to achieve detectability

Maximal isolability is obtained for
{X].aX3}7 {X17X4}

This is not all minimal sensor sets!
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Achieving mazimum isolability

= Minimal sensor sets for full detectability

{Xl}’ {X2}7 {X37X4}

= The first set {x;} was selected, iterate for all!

= Minimal sensor sets for maximum isolability:

{x1,x3}, {x1,xa}, {x2,x3}, {x2,xa}, {x3,xa}
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How about faults in the new sensors?

“Sloppy” versions of two results

Faults in the new sensors are detectable I

This is not surprising, a new sensor equation will always be in the over
determined part of the model, that was its objective.
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How about faults in the new sensors?

“Sloppy” versions of two results

Faults in the new sensors are detectable l

This is not surprising, a new sensor equation will always be in the over
determined part of the model, that was its objective.

Let F be a set of detectable faults in a model M and fs a fault in a new
sensor. Then it holds that fs is isolable from all faults in F automatically.

This result were not as evident to me, but it is nice since it makes the
algorithm for dealing with faults in the new sensors very simple.
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Method summary

@ For each detectability and isolability requirement, compute
detectability sets
= Dulmage-Mendelsohn decomposition + identify partial order
@ Apply a minimal hitting-set algorithm to all detectability sets to
compute all minimal sensor sets

The minimal sensor sets is a characterization of all sensor sets )
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Example: An electrical circuit

A small electrical circuit with 5 components that may fail

< 1
@ —

L Ry
~— v WWW——
4 2

Rs C
L3 || 5
L | —
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Example: An electrical circuit

A small electrical circuit with 5 components that may fail

< 1
O——
Vi = Vs Vs = Vo + V3
L L Rl <_ h=1ih+Is hH=1k+is+1is
4 \/\/\/\/\2 Vi=2 V2:R1i2
d d
R va = L—i 5 = C—v
2 % 4 g 5 ar
b3 || 5 V3= V4 v3 = Rai3

= 10 equations, 2 states, 5 faults, 1 known signal

= Possible measurements: currents and voltages
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FExamples of results of the analysis

Example run 1
Objective Achieve detectability
Possible measurement voltages and currents

7 minimal solutions

-, {ia, is},{i3,is}, {ia, is}, {is, v}, {is, v3}, {i5, va} J
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FExamples of results of the analysis

A (N
=/
L R
‘4_ ALER AN
2
R .
L3) || s
-+ =
Example run 2
Objective Achieve full isolability

Possible measurement voltages and currents

5 minimal solutions

-a {i17 i4}7 {i27 i37 i5}7 {i27 i47 i5}7 {i37 i47 15} J
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FExamples of results of the analysis

z
A (D
=/
L R
~— Y VAVAVAV S
4 2
R o
L) || s
- 1=
Example run 3
Objective Achieve full isolability, new sensors may fail

Possible measurement voltages and currents

7 minimal solutions

B (o), (s is}, iy, ),

{i, i3, i5,i5}, {2, a, I5, i5}, {13, ia, i5, i5 }
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FExamples of results of the analysis

& =
L R,
== Wy
4 2
Ry o
I3 || s
. I —

Example run 4
Objective Achieve maximum isolability
Possible measurement only voltages

8 minimal solutions
-7 {V17 V3}v {V17 V4}a {V27 V3}7 {V27 V4}a {V2a V5}7 {V37 V5}7 {V47 V5}

Gives isolability: {{fgen}, {1, fr1, frR2}} fc not detectable.
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Outline

@ (ase study and software demonstration
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Two examples

Example 1: Automotive engine

Analysis of an automotive engine model where only structural information
is used

Shows examples on what can be done very early in the design process

Example 2: Three tank system

Analysis of a three-tank system model

Shows examples on what can be done with structural analysis and code
generation

http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/ I
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http://www.fs.isy.liu.se/Software/FaultDiagnosisToolbox/

Automotive engine

Ezample objective

Show how non-trivial results can be obtained using only structural
information of a complex system




Modelling of automotive engines

960

Modelling diesel engines with a variable-geometry
turbocharger and exhaust gas recirculation by
optimization of model parameters for capturing
non-linear system dynamics

J Wahlstrom* and L Eriksson
Department of Electrical Engineering, Link6ping University, Linképing, Sweden

The manuscript was received on 12 February 2010 and was accepted after revision for publication on 4 January 2011.

DOI: 10.1177/0954407011398177

Abstract: A mean-value model of a diesel engine with a variable-geometry turbocharger
(VGT) and exhaust gas recirculation (EGR) is developed, parameterized, and validated. The
intended model applications are system analysis, simulation, and development of model-
based control systems. The goal is to construct a model that describes the gas flow dynamics

fale Al 4lon dvnasnian foe tlha cmaemifald ceacaraean deaa S TR, R T an A cbenbnn caiele faean
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Modelling of automotive engines, non-linear equations

Ok T av
a Tim

where pi,, and T;,,, are the pressure and temperature

respectively in the intake manifold, n. is the engine

speed, and Vjy is the displaced volume. The volu-

metric efficiency is in its turn modelled as

Tyvol = Cvol1 v/Pim + Cvol2 v/ Me + Cyol3 (12)

The fuel mass flow Wt into the cylinders is con-
trolled by us, which gives the injected mass of fuel
in milligrams per cycle and cylinder as

—6

= T30 Us ey 13)
where 7y is the number of cylinders. The mass
flow We, out from the cylinder is given by the mass
balance as

Weo = Wi+ Wei (14)

The oxygen-to-fuel ratio Ao in the cylinder is
defined as

Wei Xoim

o= (O/F),

(15)

the initialization is that the cylinder mass flow
model has a mean absolute relative error of 0.9 per
cent and a maximum absolute relative error of
2.5percent. The parameters are then tuned accord-
ing to the method in section 8.1.

4.2 Exhaust manifold temperature

The exhaust manifold temperature model consists
of a model for the cylinder-out temperature and
a model for the heat losses in the exhaust pipes.

4.2.1 Cylinder-out temperature

The cylinder-out temperature T, is modelled in the
same way as in reference [23]. This approach is
based upon ideal-gas Seliger cycle (or limited pres-
sure cycle [1]) calculations that give the cylinder-
out temperature as

- 1-1/7a p1=Ya 5 1/7a1
Te=ngdly e 7 x

1—Xey | Xey 1
x| g v ) T
(qm( Cpa * CVa) Al ) a7

where 7. is a compensation factor for non-ideal
cycles and x., the ratio of fuel consumed during
constant-volume combustion. The rest of the fuel,
i.e. (1 —x~) is used during constant-bressure com-
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Structural modelling

model.type = ’VarStruc’;

% Unknown variables

% 59 variables, 13 are states, 13 are d terms, 6 are inputs
model.x = { ’dpaf’, ’dTaf’, ’dpc’, ’dTc’, ’dpic’,

% Known variables
% 7 output sensors and 6 input sensors
model.z = { ’yTc’, ’ypc’, ’yTic’, ’ypic’, ’yTim’,

% Faults
% 12 faults (7 variable faults and 5 sensor faults)
model.f = { ’fpaf’, ’fomegat’, ’fvol’, ’fWaf’, ’fWc’,

% Define structure
% Each line represents a model relation and lists all involved variables.
% Total 66 equations for all variables, inputs and sensors
model.rels = { ...
{ ’dTaf’ ’Wc’ °’Waf’ ’Tamb’ ’paf’ ’Tafl’ },...
{ ’dpaf’ ’Taf’ ’Wc’ ’Waf’ I
{ ’dTc’ ’Wec’ °’Wic’ ’Tcl’ ’pc’ ...
sm = DiagnosisModel( model );

" v
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Check model for problems

Check model for problems

= Number of known/unknown /fault variables
= Are all signals included in the model
= Degree of redundancy

= Do the model have underdetermined parts
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Check model for problems

Check model for problems

= Number of known/unknown /fault variables
= Are all signals included in the model
= Degree of redundancy

= Do the model have underdetermined parts

>> sm.Lint () ;
Model: Structural Model of A Single Turbo Petrol Engine

Type: Structural, dynamic

Variables and equations
60 unknown variables
13 known variables
12 fault variables
67 equations, including 13 differentical constraints

Degree of redundancy: 7

Model validation finished with O errors and O warnings.

L



Plot model structure

>> sm.PlotModel(); J

Structural Model of A Single Turbo Petrol Engine

TTTTTT T T T T T T T T T TG T T T T T T T T T T TG T T T T T T T T T T AT I T T T g
(33 4

TITTTTTTTTTTTTg Y

wERERRELINERRRRRERRARE RN RRRRNNRRRRANERRRARARNERANNERRARANNRRRRNNE]

-
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Isolability analysis

>> sm.IsolabilityAnalysis(); )

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'

T T T T T T T T T T T T
fpaft @ @ E
waf @ @ E

fomegat - o E

fwih | & @ T
fxthl F S @ T
fypic - & 1
fypim |- @ R
fyTic [ ] E
fyWaf |- ®

L L L L
fpaf fWaffomegatfvol fwc fWic fWth fxthl fypic fypim fyTic fywaf
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Isolability analysis — Dulmage-Mendelsohn decomp.

>> sm.PlotDM(’eqclass’, true, ’fault’, true); J

DD D D D DD D D D D
TAC~C0 N i

—————————— fomegat

= =SF=-==—==®==3 fos
B T i

Equations

310 §is i
Variables
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Isolability analysis — integral causality

>> sm.IsolabilityAnalysis(’causality’, ’int’);

Isolability matrix for 'Structural Model of A Single Turbo Petrol

fpaf
fwaf
fywaf
fomegat
fvol
fwe
fwic
fwth
fxthl
fypic
fypim

fyTic

Engine' (integral causality)

- e @ e o0 .
- o0 © o o 1
- o000 1
- ® o0 -
- o 0 -
- 00 -
L . 4
L . . 4
L . . 4
L o i
L . 4
L . 4
L L L L L L L L L L L L
fpaf fwaf fywafomegatfvol fWwc fwic fWth fxthl fypic fypim fyTic
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Isolability analysis — derivative causality

>> sm.IsolabilityAnalysis(’causality’, ’der’);

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine' (de

fomegat

fvol

fwth
fxthl
fypic
fypim

fyTic

rivative causality)
T

L L L
fomegatfvol fpaf

fwaf fwc fywaf fwic fwth

fxthl fypic fypim fy

Tic
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Overdetermined set of equations

Degree of redundancy for the model is 7, there are 394,546 MSO sets,
instead compute the set of MTES.

>> mtes = sm.MTES();

In a second on my laptop, finds 159 MTES
= Finds all possible fault signatures (159)

= For each fault signature, we know which constraints are needed to
compute a residual

>> FSM = sm.FSM( mtes );

= We have here 159 candidate residual generators
= Do we really need all of them?
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Test selection — all 159 is not needed

>> ts = sm.TestSelection( FSM, ’method’, ’aminc’)

ts =
12
% 7 tests

22

29

55 111 113 150

>> sm.IsolabilityAnalysisFSM(FSM(ts,:));

fpaf |-
fwaf -
fomegat

fvol |-

fwth -
fxthl
fypic |
fypim -
fyTic

fywat |

Isolability matrix for 'Structural Model of A Single Turbo Petrol Engine'

fpaf fWafomegatfvol fwc fWic fwth fxthl fypic fypim fyTic fyWaf
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Ezxample with symbolic equations and code generation

€1

€3 .

€4 :

g1 =

a3 =

Plzg

Q2= 5 —

(P = p2)
(P2 = p3)
(p3)

(90 — a1)

. 1
P2 = C_(ql - qz)

_ 1
ip3= C—n(qz - q3)
yi=p

Y2 =Qq2

€10 -

€11 -

€12

Y3 =4qo
o=

dt
._dp2
P2 ="
1532%

dt

174 /195



Modelling

model.type = ’Symbolic’;

model.x = {’p1’,’p2’,’p3’,’q0’,’ql’,’q2’,°q3’,°dpl’,’dp2’,°dp3°};

model.f = {’£fV1’,°£fV2’,°fV3’,°fT1’,°fT2°,°fT3°};
model.z = {’y1’,%y2’,°y3’};

model.rels = {ql==1/Rvi*(pl-p2) + fVi,...
g92==1/Rv2*(p2-p3) + £fV2,
q3==1/Rv3*p3 + £V3,...
dp1==1/CT1%(q0-q1) + £T1,...
dp2==1/CT2x(ql1-q2) + £fT2,
dp3==1/CT3%(q2-q3) + T3,
yl==pl, y2==q2, y3==q0,...
DiffConstraint(’dpl’,’pl’),...
DiffConstraint(’dp2’,’p2°),...
DiffConstraint (’dp3’,’p3°)};

sm = DiagnosisModel( model );




Structure is automatically computed

>> sm.PlotModel();

el

e2

e3

e4

e5

e6

e7

e8

e9

el0

ell

el2

Three tank system

|
o o ° ° | -
e o L] |. | -
! !
° (] | ° | -
e o ° I ° I -
! !
e o L] [ ] -
! !
e o .l .l -
. l lo E
| |
L] | |. -
. | | .
| |
| D | | -
! D | | -
| DI l -
| |
| I I I I I S S S S N I N I R S— S S E—
2828 eBgesyeEgEep e
2888 22ECEE
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Methods for structural models directly available

>> sm.IsolabilityAnalysis();

>> sm.PlotDM(’eqclass’,true,’fault’,true);

Isolability matrix for 'Three tank system’ ' i i i T T T T T T
T T T T 1w
— fv3
Vi @
— fT3
Va2 ® ® ®
— fT1
2
V3 ® [ ] [ ] S
kS
3
=3
w
3 ® ) ) - m
1 ® - M
ert : .
2
® e8 | .
L
s s N N N . p3 g3 dp3 q0 dpl dp2 pl p2 gl q2
V1 v2 v3 T3 1 T2 Variables
>> sm.MS0()
ans =

[1x11 double] [1x8 double] [1x9 double]

[1x10 double] [1x11 double] [1x11 double]

177195



Code generation: Sequential residual generator

MSO M = {eo, e3, &4, es5, €5, €7, €g, €9, €10, €11, €12}, with & as
residual equation,

€9
Y3 —~|—> qo0 ey
\/‘_‘ Q1 es5 €11
Y1 I J41 I P1 P2 ——I—» D2
er €10 \32
€8 T
Y2 | q2 €6 €12
I 63\/|_> )
o —of—ps
Q/

To generate code for the sequential residual generator, 1) compute a
matching to compute unknown variables, 2) use residual equation for
detection

Gamma = sm.Matching([3, 4, 5, 6, 7, 8, 9, 10, 11, 12]);
sm.SeqResGen( Gamma, 2,’ResGen’); J

178 /195



Generated code (slightly cropped)

function [r, state] = ResGen(z,state,params,Ts)
% Known variables

yl = z(1);
y2 = z(2);
y3 = z(3);

% Residual generator body

Q2 = y2; % €8

q0 = y3; % e9

g3 = p3/Rv3; % el

dp3 = (92-93)/CT3; % e2

p3 = ApproxInt(dp3,state.p3,Ts); % e3

pl = y1; % e7

dpl = ApproxDiff (pl,state.pl,Ts); % el0

ql = qO0-CT1lxdpl; % e4

dp2 = (q1-92)/CT2; % eb

p2 = ApproxInt(dp2,state.p2,Ts); % ell

r = q2-(p2-p3)/Rv2; % e2 —-- residual equation
end
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Outline

@ Analytical vs structural properties

181 /195



Analytical vs structural properties

Structural analysis, applicable to a large class of models without
details of parameter values etc.

= One price is that only best-case results are obtained

Relations between analytical and structural results and properties an
interesting, but challenging area

Have not seen much research in this area

Book with a solid theoretical foundation in structural analysis

Murota, Kazuo. “Matrices and matroids for systems analysis’. Springer,
2009.
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You have to be careful

f fin="H+1
fin _>fuut fOUt = fi + f2
yi= f;'n

fe Y2 = Tout
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You have to be careful

[ fin = fi+ fo i fo fou
_ a
fm _»fout fOUt - fl + f2 Co X X X
y1 = fin a | X
F Y2 = Tout Cy X

Exactly determined model, a leak is not structurally detectable! J
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You have to be careful

fin = x
£ four = x
Fon | ety
f Y2 = Tout
x=Hh+h

Now, a leak is structurally detectable!

x fin i H four
C1 X X
() X X
C3 X
Ca X
cs | X X X
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You have to be careful

fin = x x fin A h four
fl (o] X X
fout = X
fini _»fout _ f' 2 X X
Y1 =1"Tin a3 X
f Y2 = Tout Cy X
x=f+h cs | X X X
Now, a leak is structurally detectable! J

For structural methods to be effective, do as little manipulation as
possible. Modelica/Simulink is a quite good representation of models for
structural analysis.
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Basic assumptions for structural analysis

= Structural rank sprank(A) is equal to the size of a maximum
matching of the corresponding bipartite graph.

= rank(A) < sprank(A)

= Structural analysis can give wrong results when a matrix or a
sub-matrix is rank deficient, i.e., rank(A) < sprank(A).

= Example
2 X X
Astr =
yi| _ 1 1) |x X X
2| |1 1] |x o :
Structual matrix just-determined
Redundancy relation y; — y» = 0. = no redundancy

Wrong structural results because A is rank deficient:

rank(A) =1 < 2 = sprank(A)



FExercise

FEzxercise

a) Compute the fault isolability of the model below.

b) Eliminate T in the model by using equation e4. The resulting model
with 6 equations is of course equivalent with the orignal model.
Compute the fault isolability for this model and compare it with the
isolability obtained in (a).

i

e1:V:i(R—|—fR)+Ld—;—|—Kaiw e yi=i+f

& T = Kai® & Yo =w+1,
dw

eg:JE:T—(b—i-fb)w e yr=T+fr

e T =Tn—T,
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Isolability properties depends on model formulation

. .
Original
Isolability Matrix
R o L ]
fi @ ®
fw ®
Tk
L
fR fi fw

Modified model

Isolability Matrix, T eliminated
T T
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Isolability properties depends

on model formulation

el2

e5

e6

ed

e2

el

Equations

e7

elo

e3

e9

ell

e8

Original

PSO decomposition

s L s s
th  dth alpha TI

el2

esf

e6

el

el0 [

Equations

e3r

e9

e7

e8

Modified model

PSO decomposition, T eliminated
T T T T T

e2r

[-]-

th dth alpha dI

dw Tm
Variables
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Some take home messages

Structural models

= Coarse models that do not need paramerer values etc.
= Can be obtained early in the design process
= Graph theory; analysis of large models with no numerical issues

= Best-case results
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Some take home messages

Structural models

= Coarse models that do not need paramerer values etc.

= Can be obtained early in the design process
= Graph theory; analysis of large models with no numerical issues

= Best-case results

v

= Find submodels for detector design

= Not just y — y, many more possibilities

= Diagnosability, Sensor placement, ...
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Some take home messages

Structural models

= Coarse models that do not need paramerer values etc.

= Can be obtained early in the design process
= Graph theory; analysis of large models with no numerical issues
= Best-case results

v

= Find submodels for detector design

= Not just y — y, many more possibilities
= Diagnosability, Sensor placement, ...

Residual generation

= Structural analysis supports code generation for residual generators
= Sequential residual generators based on matchings
= Observer based residual generators

v
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Some publications on structural analysis from our group

Overdetermined equations, MSO, MTES

@ Mattias Krysander, Jan Aslund, and Mattias Nyberg.
An efficient algorithm for finding minimal over-constrained
sub-systems for model-based diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 38(1), 2008.

@ Mattias Krysander, Jan Aslund, and Erik Frisk.
A structural algorithm for finding testable sub-models and multiple
fault isolability analysis.
21st International Workshop on Principles of Diagnosis (DX-10),
Portland, Oregon, USA, 2010.

192 /195



Some publications on structural analysis from our group

Sensor placement and diagnosability analysis

@ Mattias Krysander and Erik Frisk.
Sensor placement for fault diagnosis.
IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 38(6):1398-1410, 2008.

@ Erik Frisk, Anibal Bregon, Jan Aslund, Mattias Krysander, Belarmino
Pulido, and Gautam Biswas.
Diagnosability analysis considering causal interpretations for
differential constraints.
IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 42(5):1216-1229, September 2012.
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Some publications on structural analysis from our group

Residual generation supported by structural analysis

[ Carl Svird and Mattias Nyberg. Residual generators for fault diagnosis
using computation sequences with mixed causality applied to
automotive systems.

IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, 40(6):1310-1328, 2010.

@ Carl Svird, Mattias Nyberg, and Erik Frisk.
Realizability constrained selection of residual generators for fault
diagnosis with an automotive engine application.

IEEE Transactions on Systems, Man, and Cybernetics: Systems,
43(6):1354-1369, 2013.
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Publications on Structural Analysis from our group

Application studies

@ Dilek Dustegér, Erik Frisk, Vincent Coquempot, Mattias Krysander,
and Marcel Staroswiecki.
Structural analysis of fault isolability in the DAMADICS benchmark.
Control Engineering Practice, 14(6):597-608, 2006.

@ Carl Svird and Mattias Nyberg.
Automated design of an FDI-system for the wind turbine benchmark.
Journal of Control Science and Engineering, 2012, 2012.

@ Carl Svard, Mattias Nyberg, Erik Frisk, and Mattias Krysander.
Automotive engine FDI by application of an automated model-based
and data-driven design methodology.

Control Engineering Practice, 21(4):455-472, 2013.
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